
Program Logics for
Certified Compilers

TABLE OF CONTENTS
and SAMPLE CHAPTER
of prepublication
manuscript
May 31, 2013

Andrew W. Appel
with Robert Dockins, Aquinas Hobor,

Lennart Beringer, Josiah Dodds, Gordon Stewart,
Sandrine Blazy, and Xavier Leroy

appel
Typewritten Text
Coming soon from Cambridge University Press

appel
Typewritten Text

This is the preliminary manuscript of a book that will be published in late
2013, and will be citable as

Andrew W. Appel et al.,
Program Logics for Certified Compilers, Cambridge University Press, 2014.

Copyright c⃝ 2013 Andrew W. Appel

v

Contents

Road map vii
Acknowledgments viii
1 Introduction 9

I Generic Separation Logic 17
2 Hoare logic 18
3 Separation logic 24
4 Soundness of Hoare logic 33
5 Mechanized Semantic Library 41
6 Separation algebras 43
7 Operators on separation algebras 52
8 First-order separation logic 57
9 A little case study 63
10 Covariant recursive predicates 71
11 Share accounting 77

II Higher Order Separation Logic 83
12 Separation Logic as a logic 84
13 From separation algebras to separation logic 92
14 Simplification by rewriting 97
15 Introduction to step-indexing 102
16 Predicate implication and subtyping 107
17 General recursive predicates 112
18 Case Study: Separation logic with first-class functions 119

vi

19 Data structures in indirection theory 131
20 Applying higher-order separation logic 138
21 Lifted Separation Logics 142

III Separation Logic for CompCert 149
22 Verifiable C 150
23 Expressions, values, and assertions 156
24 The VST Separation Logic for C light 161
25 Typechecking for Verifiable C 181
26 Derived rules and proof automation for C light 190
27 Proof of a program 200
28 More C programs 213
29 Dependently typed C programs 222
30 Concurrent separation logic 227

IV Operational Semantics of CompCert 237
31 CompCert 238
32 The CompCert memory model 242
33 How to specify a compiler 277
34 C light operational semantics 289

V Indirection Theory 295
35 Higher-order Hoare logic 296
36 Higher-order separation logic 304
37 Case study: Lambda-calculus with references 308
38 Semantic models of predicates-in-the-heap 332

VI Semantic model and soundness of Verifiable C 337
39 Separation algebra for CompCert 338
40 Share models 349
41 Juicy memories 360
42 Modeling the Hoare judgment 368
43 Modular structure of the development 376

vii

VII Applications 392
45 Foundational static analysis 393
46 Heap theorem prover 408

Bibliography 424

Index 434

Road map

Readers interested in the theory of separation logic (with some
example applications) should read Chapters 1–21. Readers interested in
the use of separation logic to verify C programs should read Chapters 1–6
and 8–30. Those interested in the theory of step-indexing and indirection
theory should read Chapters 35–39. Those interested in building models
of program logics proved sound for certified compilers should read
Chapters 40–46, though it would be helpful to read Chapters 1–39 as a
warm-up.

9

Chapter 1

Introduction

An exciting development of the 21st century is that the 20th-century vision
of mechanized program verification is finally becoming practical, thanks
to 30 years of advances in logic, programming-language theory, proof-
assistant software, decision procedures for theorem proving, and even
Moore’s law which gives us everyday computers powerful enough to run all
this software.

We can write functional programs in ML-like languages and prove them
correct in expressive higher-order logics; and we can write imperative
programs in C-like languages and prove them correct in appropriately
chosen program logics. We can even prove the correctness of the verification
toolchain itself: the compiler, the program logic, automatic static analyzers,
concurrency primitives (and their interaction with the compiler). There
will be few places for bugs (or security vulnerabilities) to hide.

This book explains how to construct powerful and expressive program
logics based on Separation Logic and Indirection Theory. It is accompanied
by an open-source machine-checked formal model and soundness proof, the
Verified Software Toolchain1 (VST), formalized in the Coq proof assistant.
The VST components include the theory of separation logic for reasoning
about pointer-manipulating programs; indirection theory for reasoning
with “step-indexing” about first-class function pointers, recursive types,

1http://vst.cs.princeton.edu

http://vst.cs.princeton.edu

1. INTRODUCTION 10

recursive functions, dynamic mutual-exclusion locks, and other higher-
order programming; a Hoare logic (separation logic) with full reasoning
about control-flow and data-flow of the C programming language; theories
of concurrency for reasoning about programming models such as Pthreads;
theories of compiler correctness for connecting to the CompCert verified C
compiler; theories of symbolic execution for implementing foundationally
verified static analyses. VST is built in a modular way, so that major
components apply very generally to many kinds of separation logics, Hoare
logics, and step-indexing semantics.

One of the major demonstration applications comprises certified pro-
gram logics and certified static analyses for the C light programming
language. C light is compiled into assembly language by the CompCert2

certified optimizing compiler. [59] Thus, the VST is useful for verified for-
mal reasoning about programs that will be compiled by a verified compiler.
But Parts I, II, and V of this book show principles and Coq developments
that are quite independent of CompCert and have already been useful in
other applications of separation logics.

PROGRAM LOGICS FOR CERTIFIED COMPILERS. Software is complex and prone
to bugs. We would like to reason about the correctness of programs,
and even to prove that the behavior of a program adheres to a formal
specification. For this we use program logics: rules for reasoning about
the behavior of programs. But programs are large and the reasoning rules
are complex; what if there is a bug in our proof (in our application of the
rules of the program logic)? And how do we know that the program logic
itself is sound—that when we conclude something using these rules, the
program will really behave as we concluded? And once we have reasoned
about a program, we compile it to machine code; what if there is a bug in
the compiler?

We achieve soundness by formally verifying our program logics, static
analyzers, and compilers. We prove soundness theorems based on foun-
dational specifications of the underlying hardware. We check all proofs by
machine, and connect the proofs together end-to-end so there are no gaps.

2http://compcert.inria.fr

http://compcert.inria.fr

1. INTRODUCTION 11

DEFINITIONS. A program consists of instructions written in a programming
language that direct a computer to perform a task. The behavior of a
program, i.e. what happens when it executes, is specified by the operational
semantics of the programming language. Some programming languages
are machine languages that can directly execute on a computer; others
are source languages that require translation by a compiler before they can
execute.

A program logic is a set of formal rules for static reasoning about the
behavior of a program; the word static implies that we do not actually
execute the program in such reasoning. Hoare Logic is an early and still
very important program logic. Separation Logic is a 21st-century variant of
Hoare Logic that better accounts for pointer and array data structures.

A compiler is correct with respect to the specification of the operational
semantics of its source and its target languages if, whenever a source
program has a particular defined behavior, and when the compiler translates
that program, then the target program has a corresponding behavior. [36]
The correspondence is part of the correctness specification of the compiler,
along with the two operational semantics. A compiler is proved correct if
there is a formal proof that it meets this specification. Since the compiler
is itself a program, this formal proof will typically be using the rules of a
program logic for the implementation language of the compiler.

Proofs in a logic (or program logic) can be written as derivation trees in
which each node is the application of a rule of the system. The validity of a
proof can be checked using a computer program. A machine-checked proof
is one that has been checked in this way. Proof-checking programs can be
quite small and simple, [12] so one can reasonably hope to implement a
proof-checker free of bugs.

It is inconvenient to construct derivation trees “by hand.” A proof
assistant is a tool that combines a proof checker with a user interface that
assists the human in building proofs. The proof assistant may also contain
algorithms for proof automation, such as tactics and decision procedures.

A certified compiler is one proved correct with a machine-checked proof.
A certified program logic is one proved sound with a machine-checked proof.
A certified program is one proved correct (using a program logic) with a
machine-checked proof.

1. INTRODUCTION 12

A static analysis algorithm calculates properties of the behavior of a
program without actually running it. A static analysis is sound if, whenever
it claims some property of a program, that property holds on all possible
behaviors (in the operational semantics). The proof of soundness can be
done using a (sound) program logic, or it can be done directly with respect
to the operational semantics of the programming language. A certified static
analysis is one that is proved sound with a machine-checked proof—either
the static analysis program is proved correct, or each run of the static
analysis generates a machine-checkable proof about a particular instance.

In Part I we will review Hoare logics, operational semantics, and
separation logics. For a more comprehensive introduction to Hoare
logic, the reader can consult Huth and Ryan [52] or many other books;
For operational semantics, see Harper [45, Parts I & II] or Pierce [73].
For an introduction to theorem-proving in Coq, see Pierce’s Software
Foundations[74] which also covers applications to operational semantics
and Hoare logic.

THE VST SEPARATION LOGIC FOR C LIGHT is a higher-order impredicative
concurrent separation logic certified with respect to CompCert. Separation
Logic means that its assertions specify heap-domain footprints: the assertion
(p x) ∗ (q y) describes a memory with exactly two disjoint parts; one
part has only the cell at address p with contents x , and the other has
only address q with contents y , with p ̸= q. Concurrent Separation Logic
is an extension that can describe shared-memory concurrent programs
with Dijkstra-Hoare synchronization (e.g., Pthreads). Higher-order means
that assertions can use existential and universal quantifiers, the logic can
describe pointers to functions and mutex locks, and recursive assertions can
describe recursive data types such as lists and trees. Impredicative means
that the ∃ and ∀ quantifiers can even range over assertions containing
quantifiers. Certified means that there is a machine-checked proof of
soundness with respect to the operational semantics of a source language
of the CompCert C compiler.

A separation logic has assertions p x where p ranges over a particular
address type A, x ranges over a specific type V of values, and the assertion
as a whole can be thought of as a predicate over some specific type of

1. INTRODUCTION 13

“heaps” or “computer memories” M . Then the logic will have theorems
such as (p x) ∗ (q y) ⊢ (q y) ∗ (p x).

We will write down generic separation logic as a theory parameterizable
by types such as A, V, M , and containing generic axioms such as P∗Q ⊢Q∗P.
For a particular instantiation such as CompCert C light, we will instantiate
the generic logic with the types of C values and C expressions.

Chapter 3 will give an example of an informal program verification
in “pencil-and-paper” Separation Logic. Then Part V shows the VST tools
applied to build a foundationally sound toolchain for a toy language, with
a machine-verified separation-logic proof of a similar program. Part III
demonstrates the VST tools applied to the C language, connected to the
CompCert compiler, and shows machine-checked verification C programs.

Shares

 C light
syntax

 C light expression
 semantics

Generic axioms of
Separation Logic &
Indirection theory

Specification of Hoare Client View axioms for C light

Local/global var.
environments

Assertion operators of
VST Separation Logic

Values

C light program logic,
Chapter 24

Assertions, Ch. 23

Shares, Ch. 11

Separation Logic
with Indirection,
Ch. 8,11,12,15–21

Figure 1.1: Client view of VST Separation Logic

FIGURE 1.1 SHOWS THE client view of the VST Separation Logic for C light—
that is, the specification of the axiomatic semantics. Users of the program
logic will reason directly about CompCert values (integers, floats, pointers)
and C-light expression evaluation. Users do not see the operational
semantics of C-light commands, or CompCert memories. Instead, they use

1. INTRODUCTION 14

the axiomatic semantics—the Hoare judgment and its reasoning rules—to
reason indirectly about memories via assertions such as p x .

The modular structure of the client view starts (at bottom left of Fig. 1.1)
with the specification of the C light language, a subset of C chosen for its
compatibility with program-verification methods. We have C values (such
as integers, floats, and pointers); the abstract syntax of C light, and
the mechanism of evaluating C light expressions. The client view treats
statements such as assignment and looping abstractly via an axiomatic
semantics (Hoare logic), so it does not expose an operational semantics.

At bottom right of Figure 1.1 we have the operators and axioms of
Separation Logic and of Indirection Theory. At center are the assertions of
our program logic for C light, which (as the diagram shows) make use of
C-light expressions and of our logical operators. At top, the Hoare axioms
for C light complete the specification of the program logic.

Readers primarily interested in using the VST tools may want to read
Parts I through III, which explain the components of the client view.

THE SOUNDNESS PROOF OF THE VST SEPARATION LOGIC is constructed by
reasoning in the model of separation logic. Figure 1.2 shows the structure
of the soundness proof. At bottom left is the specification of C-light
operational semantics. We have a generic theory of safety and simulation
for shared-memory programs, and we instantiate that into the “C light
safety” theory.

At bottom right (Fig. 1.2) is the theory of separation algebras, which form
models of separation logics. The assertions of our logic are predicates on the
resource maps that, in turn, model CompCert memories. The word predicate
is a technical feature of our Indirection Theory that implicitly accounts
for “resource approximation,” thus allowing higher-order reasoning about
circular structures of pointers and resource invariants.

We construct a semantic model of the Hoare judgment, and use this
to prove sound all the judgment rules of the Separation Logic. All this is
encapsulated in a Coq module called SeparationLogicSoundness.

Parts IV through VI explain the components of Figure 1.2, the semantic
model and soundness proof of higher-order impredicative separation logic
for CompCert C light.

1. INTRODUCTION 15

Soundness
proof:
Chapter 42

Model of Hoare
judgment:
Chapter 42

Safety:
Chapter 33

C light:
Chapter 39

CompCert:
Chapter 22

Generic theory of
Separation Algebras

Indirection
Theory

Shares

 C light
syntax &

expression
semantics

 C light
command
semantics

Generic operators
of Separation Logic

ValuesMemories

Model of Hoare
judgment (semax)

Specification of Hoare
axioms for C light

(SeparationLogic)

Certified Separation Logic for C light
(SeparationLogicSoundness)

Soundness proofs
of Hoare axioms

Environments
Generic theory
of safety and

simulation (environ)
Resource maps
(rmap) sep. alg.

Model of assertions in
VST Separation Logic

Ageable sep. algs.

C light safety

Soundness
Proof

Figure 1.2: Structure of the separation-logic soundness proof

The Coq development of the Verified Software Toolchain is available at
vst.cs.princeton.edu and is structured in a root directory with several
subdirectories:

compcert: A few files copied from the CompCert verified C compiler, that
comprise the specification of the C light programming language.

vst.cs.princeton.edu

1. INTRODUCTION 16

sepcomp: Theory of how to specify shared-memory interactions of
CompCert-compiled programs.

msl: Mechanized Software Library, the theory of separation algebras, share
accounting, and generic separation logics.

veric: The program logic: a higher-order splittable-shares concurrent
separation logic for C light.

floyd: A proof-automation system of lemmas and tactics for semiautomated
application of the program logic to C programs.

progs: Applications of the program logic to sample programs.

veristar: A heap theorem prover using resolution and paramodulation.

A proof development, like any software, is a living thing: it is continually
being evolved, edited, maintained, and extended. We will not tightly couple
this book to the development; we will just explain the key mathematical
and organizational principles, illustrated with snapshots from the Coq code.

17

Part I

Generic Separation Logic

SYNOPSIS: Separation logic is a formal system for static reasoning about
pointer-manipulating programs. Like Hoare logic, it uses assertions that
serve as preconditions and postconditions of commands and functions. Unlike
Hoare logic, its assertions model anti-aliasing via the disjointness of memory
heaplets. Separation algebras serve as models of separation logic. We can
define a calculus of different kinds of separation algebras, and operators
on separation algebras. Permission shares allow reasoning about shared
ownership of memory and other resources. In a first-order separation logic
we can have predicates to describe the contents of memory, anti-aliasing of
pointers, and simple (covariant) forms of recursive predicates. A simple case
study of straight-line programs serves to illustrate the application of separation
logic.

83

Part II

Higher Order Separation Logic

SYNOPSIS: Instead of reasoning directly on the model (that is, separation
algebras), we can treat Separation Logic as a syntactic formal system, that is,
a logic. We can implement proof automation to assist in deriving separation-
logic proofs.

Reasoning about recursive functions, recursive types, and recursive
predicates can lead to paradox if not done carefully. Step-indexing avoids
paradoxes by inducting over the number of remaining program-steps that we
care about. Indirection theory is a kind of step-indexing that can serve as
models of higher-order Hoare logics. Using indirection theory we can define
general (not just covariant) recursive predicates.

Recursive data structures such as lists and trees are easily modeled in
indirection theory, but the model is not the same one conventionally used, as it
inducts over “age”—the approximation level, the amount of information left in
the model—rather than list-length or tree-depth. A tiny pointer/continuation
language serves as a case study for Separation Logic with first-class function-
pointers, modeled in indirection theory. The proof of a little program in
the case-study language illustrates the application of separation logic with
function pointers.

149

Part III

Separation Logic for CompCert

SYNOPSIS: Verifiable C is a style of C programming suited to separation-logic
verifications; it is similar to the C light intermediate language of the CompCert
compiler. We show the assertion language of separation-logic predicates for
specifying states of a C execution. The judgment form semax of the axiomatic
semantics relates a C command to its precondition postconditions, and for each
kind of command there is an inference rule for proving its semax judgments.
We illustrate with the proof of a C program that manipulates linked lists,
and we give examples of other programs and how they can be specified in
the Verifiable C program logic. Shared-memory concurrent programs with
Dijkstra-Hoare synchronization can be verified using the rules of concurrent
separation logic.

237

Part IV

Operational Semantics of
CompCert

SYNOPSIS: Specification of the interface between CompCert and its clients such
as the VST Separation Logic for C light, or clients such as proved-sound static
analyses and abstract interpretations. This specification takes the form of an
operational semantics with a nontrivial memory model. The need to preserve
the compiler’s freedom to optimize the placement of data (in memory, out
of memory) requires the ability to rename addresses and adjust block sizes.
Thus the specification of shared-memory interaction between subprograms
(separately compiled functions, or concurrent threads) requires particular
care, to keep these renamings consistent.

295

Part V

Indirection Theory

SYNOPSIS: Indirection theory gives a clean interface to higher-order step
indexing. Many different semantic features of programming languages can be
modeled in indirection theory. The models of indirection theory use dependent
types to stratify quasirecursive predicates, thus avoiding paradoxes of self-
reference. Lambda calculus with mutable references serves as a case study to
illustrate the use of indirection theory models.

When defining both Indirection and Separation one must take extra care
to ensure that aging commutes over separation. We demonstrate how to
build an axiomatic semantics with using higher-order separation logic, for the
pointer/continuation language introduced in the case study of Part II.

349

Part VI

Semantic model and soundness of
Verifiable C

SYNOPSIS: To prove soundness of the Verifiable C separation logic, we first give
a model of mpred as pred(rmap), that is, predicates on resource maps. We
give a model for permission-shares using trees of booleans. We augment the C
light operational semantics with juicy memories that keep track of resources
as well as “dry” values. We give a semantic model of the Hoare judgment,
using the continuation-passing notion of “guards.” We use this semantic model
to prove all the Hoare rules. Our model and proofs have a modular structure,
so that they can be ported to other programming languages (especially in the
CompCert family).

392

Part VII

Applications

SYNOPSIS: In Part III we showed how to apply a program logic interactively
to a program, using tactics. Here we will show a different use of program
logics: we build automatic static analyses and decision procedures as efficient
functional programs, and prove their soundness using the rules of the program
logic.

