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1 Overview
Verifiable C is a language and program logic for reasoning about the
functional correctness of C programs. The language is a subset of
CompCert C light; it is a dialect of C in which side-effects and loads have
been factored out of expressions. The program logic is a higher-order
separation logic, a kind of Hoare logic with better support for reasoning
about pointer data structures, function pointers, and data abstraction.

Verifiable C is foundationally sound. That is, it is proved (with a machine-
checked proof in the Coq proof assistant) that,

Whatever observable property about a C program you prove
using the Verifiable C program logic, that property will
actually hold on the assembly-language program that comes
out of the C compiler.

This soundness proof comes in two parts: The program logic is proved
sound with respect to the semantics of CompCert C, by a team of
researchers primarily at Princeton University; and the C compiler is
proved correct with respect to those same semantics, by a team of
researchers primarily at INRIA. This chain of proofs from top to bottom,
connected in Coq at specification interfaces, is part of the Verified Software
Toolchain.

Verified

Software

Toolchain
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To use Verifiable C, one must have had some experience using Coq, and
some familiarity with the basic principles of Hoare logic. These can be
obtained by studying Pierce’s Software Foundations interactive textbook,
and doing the exercises all the way to chapter “Hoare2.”

It is also useful to read the brief introductions to Hoare Logic and Sepa-
ration Logic, covered in Appel’s Program Logics for Certified Compilers,
Chapters 2 and 3 (those chapters available free, follow the link).

PROGRAM LOGICS FOR CERTIFIED COMPILERS (Cambridge University
Press, 2014) describes Verifiable C version 1.1. If you are interested in
the semantic model, soundness proof, or memory model of VST, the book
is well worth reading. But it is not a reference manual.

More recent VST versions differ in several ways from what the PLCC
book describes. • In the LOCAL component of an assertion, one writes
temp i v instead of (̀eq v) (eval-id i). • In the SEP component of an
assertion, backticks are not used (predicates are not lifted). • In general,
the backtick notation is rarely needed. • The type-checker now has a
more refined view of char and short types. • field-mapsto is now called
field-at, and it is dependently typed. • typed-mapsto is renamed data-at,
and last two arguments are swapped. • umapsto (“untyped mapsto”) no
longer exists. • mapsto sh t v w now permits either (w =Vundef) or the
value w belongs to type t. This permits describing uninitialized locations,
i.e., mapsto-sh t v = mapsto- sh t v Vundef. For function calls, one uses
forward-call instead of forward. • C functions may fall through the end of
the function body, and this is (per the C semantics) equivalent to a return
statement.

https://softwarefoundations.cis.upenn.edu
http://vst.cs.princeton.edu/download/PLCC-to-chapter-3.pdf#page=20
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2 Installation
The Verified Software Toolchain runs on Linux, Mac, or Windows. You
will need to install:

Coq 8.11, from coq.inria.fr. Follow the standard installation instructions.
CompCert 3.7, from http://compcert.inria.fr/download.html. Build

the clightgen tool, using these commands: ./configure -clightgen
x86_32-linux; make. You might replace x86_32-linux with x86_32-
macosx or x86_32-cygwin. Verifiable C should work on other 32-bit
architectures as well, but has not been extensively tested. Verifiable
C also works (and is regularly tested) on 64-bit architectures.

VST 2.5, from vst.cs.princeton.edu, or else an appropriate version from
https://github.com/PrincetonUniversity/VST. After unpacking, read
the BUILD_ORGANIZATION file (or simply make -j).

Note on the Windows (cygwin) installation of CompCert: To build CompCert
you’ll need an up to date version of the menhir parser generator. To work around
a cygwin incompatibility in the menhir build, touch src/.versioncheck before
doing make.

http://compcert.inria.fr/download.html
vst.cs.princeton.edu
https://github.com/PrincetonUniversity/VST
http://gallium.inria.fr/~fpottier/menhir/
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3 Workflow, loadpaths
Within VST, the progs directory contains some sample C programs with
their verifications. The workflow is:

• Write a C program F.c.
• Run clightgen -normalize F.c to translate it into a Coq file F.v.
• Write a verification of F.v in a file such as verif-F.v. That latter

file must import both F.v and the VST Floyd1 program verification
system, VST.floyd.proofauto.

LOAD PATHS. Interactive development environments (CoqIDE or Proof
General) will need their load paths properly initialized. Running make
in vst creates a file -CoqProject file with the right load paths for proof
development of the VST itself or of its progs/ examples. From the VST
current directory, you can say (for example),
coqide progs/verif-reverse.v &

IN NORMAL USE (if you are not simply browsing the progs examples) your
own files (F.c, F.v, verif_F.v) will not be inside the VST directory. You
will need to run coqc or coqide (or Proof General) with “coq flags” to access
the VST components. For this, use the file -CoqProject-export, created by
make in VST.

Example:

cd my-own-directory
cp my/path/to/VST/-CoqProject-export -CoqProject
coqide myfile.v &

FOR MORE INFORMATION, See the heading USING PROOF GENERAL AND

COQIDE in the file BUILD_ORGANIZATION.

1Named after Robert W. Floyd (1936–2001), a pioneer in program verification.
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4 Verifiable C and clightgen
Verifiable C is a program logic (higher-order impredicative concurrent
separation logic) for C programs with these restrictions:

• No casting between integers and pointers.
• No goto statements.
• No struct-copying assignments, struct parameters, or struct returns.
• Only structured switch statements (no Duff ’s device).

CompCert’s clightgen tool translates C into abstract syntax trees (ASTs)
of CompCert’s Clight intermediate language. You find clightgen in the root
directory of your CompCert installation, after doing make clightgen.

Suppose you have a C source program broken into three files x.c y.c z.c.

clightgen -normalize x.c y.c z.c

This produces the files x.v y.v z.v containing Coq representations of ASTs.

Clightgen invokes the standard macro-preprocessor (to handle define and
include), parses, type-checks, and produces ASTs. We translate all three
files in one call to Clightgen, so that the global names in the C program
(“extern” identifiers) will have consistent symbol-table indexes (ident
values) across all three files.

Although your C programs may have side effects inside subexpressions,
and memory dereferences inside subexpressions or if-tests, the program
logic does not permit this. Therefore, clightgen transforms your programs
before you apply the program logic:

• Factors out function calls and assignments from inside subexpres-
sions (by moving them into their own assignment statements).

• Factors && and || operators into if statements (to capture short
circuiting behavior).

• When the -normalize flag is used, factors each memory dereference
into a top level expression, i.e. x=a[b[i]]; becomes t=b[i]; x=a[t];.
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5 ASTs: abstract syntax trees
We will introduce Verifiable C by explaining the proof of a simple C
program: adding up the elements of an array.

unsigned sumarray(unsigned a[], int n) {
int i; unsigned s;
i=0;
s=0;
while (i<n) {

s+=a[i];
i++;

}
return s;

}

unsigned four[4] = {1,2,3,4};

int main(void) {
unsigned s;
s = sumarray(four,4);
return (int)s;

}

You can examine this program in VST/progs/sumarray.c. Then look at
progs/sumarray.v to find the output of CompCert’s clightgen utility: it is
the abstract syntax tree (AST) of the C program, expressed in Coq. In
sumarray.v there are definitions such as,

Definition -main : ident := 54%positive.
Definition -s : ident := 50%positive.
· · ·
Definition f-sumarray := {|

fn-return := tint; . . .
fn-params := ((-a, (tptr tint)) :: (-n, tint) :: nil);
fn-temps := ((-i, tint) :: (-s, tint) :: (-x, tint) :: nil);
fn-body :=

(Ssequence
(Sset -i (Econst-int (Int.repr 0) tint))
(Ssequence (Sset -s (Econst-int (Int.repr 0) tint)) (Ssequence . . . ))) |}.

Definition prog : Clight.program := {| . . . f-sumarray . . . |}.
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In general it’s never necessary to read the AST file such as sumarray.v. But
it’s useful to know what kind of thing is in there. C-language identifiers
such as main and s are represented in ASTs as positive numbers (for
efficiency); the definitions -main and -s are abbreviations for these. The
AST for sumarray is in the function-definition f-sumarray.

In the source program sumarray.c, the function sumarray’s return type
is is int. In the abstract syntax (sumarray.v), the fn-return compo-
nent of the function definition is tint, or equivalently (by Definition)
Tint I32 Signed noattr. The Tint constructor is part of the abstract syntax
of C type-expressions, defined by CompCert as,

Inductive type : Type :=
| Tvoid: type
| Tint: intsize →signedness →attr →type
| Tpointer: type →attr →type
| Tstruct: ident →attr →type
| . . . .

See also Chapter 27 (C types).
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6 Use the IDE
Chapter 7 through Chapter 21 are meant to be read while you have the file
progs/verif_sumarray.v open in a window of your interactive development
environment for Coq. You can use Proof General, CoqIDE, or any other
IDE that supports Coq.

Reading these chapters will be much less informative if you cannot see
the proof state as each chapter discusses it.

Before starting the IDE, review Chapter 3 (Workflow) to see how to set up
load paths.
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7 Functional model, API spec
A program without a specification cannot be incorrect, it can only be
surprising. (Paraphrase of J. J. Horning, 1982)

The file progs/verif-sumarray.v contains the specification of sumarray.c and
the proof of correctness of the C program with respect to that specification.
For larger programs, one would typically break this down into three or
more files:

1. Functional model (often in the form of a Coq function)
2. API specification
3. Function-body correctness proofs, one per file.

We start verif-sumarray.v with some standard boilerplate:

Require Import VST.floyd.proofauto.
Require Import VST.progs.sumarray.
Instance CompSpecs : compspecs. make-compspecs prog. Defined.
Definition Vprog : varspecs. mk-varspecs prog. Defined.

The first line imports Verifiable C and its Floyd proof-automation library.
The second line imports the AST of the program to be proved. Lines 3 and
4 are identical in any verification: see Chapter 28 and Chapter 50.

To prove correctness of sumarray.c, we start by writing a functional spec of
adding-up-a-sequence, then an API spec of adding-up-an-array-in-C.

FUNCTIONAL MODEL. A mathematical model of this program is the sum
of a sequence of integers:

∑n−1
i=0 xi. It’s conventional in Coq to use list to

represent a sequence; we can represent the sum with a list-fold:

Definition sum-Z : list Z →Z := fold-right Z.add 0.

A functional model contains not only definitions; it’s also useful to include
theorems about this mathematical domain:
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Lemma sum-Z-app: ∀a b, sum-Z (a++b) = sum-Z a + sum-Z b.
Proof. intros. induction a; simpl; lia. Qed.

The data types used in a functional model can be any kind of mathematics
at all, as long as we have a way to relate them to the integers, tuples,
and sequences used in a C program. But the mathematical integers Z
and the 32-bit modular integers Int.int are often relevant. Notice that this
functional spec does not depend on sumarray.v or even on anything in the
Verifiable C libraries. This is typical, and desirable: the functional model
is about mathematics, not about C programming.

THE APPLICATION PROGRAMMER INTERFACE (API) of a C program
is expressed in its header file: function prototypes and data-structure
definitions that explain how to call upon the modules’ functionality.
In Verifiable C, an API specification is written as a series of function
specifications (funspecs) corresponding to the function prototypes.

Definition sumarray-spec : ident ∗ funspec :=
DECLARE -sumarray
WITH a: val, sh : share, contents : list Z, size: Z
PRE [ (tptr tuint), tint ]

PROP(readable-share sh;
0 ≤ size ≤ Int.max-signed;
Forall (fun x ⇒ 0 ≤ x ≤ Int.max-unsigned) contents)

PARAMS(a; Vint (Int.repr size))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

POST [ tuint ]
PROP()
RETURN(Vint (Int.repr (sum-Z contents)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a).

The funspec begins, Definition f -spec := DECLARE _ f ... where f is the
name of the C function, and _ f : ident is Coq’s name for the identifier that
denotes f in the AST of the C program (see page 10).
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A function is specified by its precondition and its postcondition. The
WITH clause quantifies over Coq values that may appear in both the
precondition and the postcondition. The precondition is parameterized by
the C-language function parameters, and the postcondition is parameter-
ized by a identifier ret-temp, which is short for, “the temporary variable
holding the return value.”

Function preconditions, postconditions, and loop invariants are assertions
about the state of variables and memory at a particular program point.
In an assertion PROP(P⃗) LOCAL(Q⃗) SEP(R⃗), the propositions in the
sequence P⃗ are all of Coq type Prop, describing facts that are independent
of program state. In the precondition above, the 0 ≤ size ≤ Int.max-signed
is true just within the scope of the quantification of the variable size; it is
bound by WITH, and spans the PRE and POST assertions.

If you see a precondition (PRE) with LOCAL instead of PARAMS, it is an
old-style funspec; see Chapter 74.

The local part of a PROP/LOCAL/SEP assertion takes different forms
depending on what kind of local variables it describes: in function pre-
conditions it is written PARAMS() (or sometimes PARAMS()GLOBALS());
in function postconditions it is written RETURN(); and inside a function
body it is LOCAL().

Function preconditions are based on nameless, positional parameter
notation. That is, PRE[⃗τ] gives the C-language types (but not the names)
of the formal parameters, and PARAMS(⃗v) gives the abstract values (but
not the names) of those parameters. As you can see, the abstract values
are usually based on variables bound in the WITH clause.

Values of PARAMS and RETURN are C scalar values whose Coq type is
val; this type is defined by CompCert as,

Inductive val: Type := Vundef: val | Vint: int →val | Vlong: int64 →val
| Vfloat: float →val | Vsingle: float32 →val | Vptr: block →ptrofs →val.
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The SEP conjuncts R⃗ are spatial assertions in separation logic. In this
case, there’s just one, a data-at assertion saying that at address a in
memory, there is a data structure of type array[size] of unsigned integers,
with access-permission sh, and the contents of that array is the sequence
map Vint (map Int.repr contents).

THE POSTCONDITION is introduced by POST [ tuint ], indicating that
this function returns a value of type unsigned int. There are no PROP
statements in this postcondition—no forever-true facts hold now, that
weren’t already true on entry to the function. The RETURN clause says
what the return value is (or RETURN() for a void function). The SEP
clause mentions all the spatial resources from the precondition, minus
ones that have been freed (deallocated), plus ones that have been malloc’d
(allocated).

So, overall, the specification for sumarray is this: “At any call to sumarray,
there exist values a,sh,contents,size such that sh gives at least read-
permission; size is representable as a nonnegative 32-bit signed integer;
the first function-parameter contains value a and the second contains the
32-bit representation of size; and there’s an array in memory at address
a with permission sh containing contents. The function returns a value
equal to sum-int(contents), and leaves the array unaltered.”

INTEGER OVERFLOW. In Verifiable C’s signed integer arithmetic, you
must prove (if the system cannot prove automatically) that no overflow
occurs. In unsigned integers, arithmetic is treated as modulo-2n (where
n is typically 32 or 64), and overflow is not an issue. See Chapter 24.
The function Int.repr: Z → int truncates mathematical integers into 32-bit
integers by taking the (sign-extended) low-order 32 bits. Int.signed: int →Z
injects back into the signed integers.

This program uses unsigned arithmetic for the s and the array contents,
and uses signed arithmetic for i.

The postcondition guarantees that the value returned is
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Int.repr (sum-Z contents). But what if
∑

s ≥ 232, so the sum doesn’t fit
in a 32-bit signed integer? Then
Int.unsigned(Int.repr (sum-Z contents)) ̸= (sum-Z contents). In general, for
a claim about Int.repr(x) to be useful, one also needs a claim that 0 ≤ x ≤
Int.max_unsigned or Int.min_signed≤ x ≤ Int.max_signed. The caller of this
function will probably need to prove 0≤ sum_Z contents≤ Int.max_unsigned
in order to make much use of the postcondition.
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8 Proof of the sumarray program
To prove correctness of a whole program,

1. Collect the function-API specs together into Gprog: list funspec.
2. Prove that each function satisfies its own API spec (with a

semax-body proof).
3. Tie everything together with a semax-func proof.

In progs/verif_sumarray.v, the first step is easy:

Definition Gprog := ltac:(with-library prog [sumarray-spec; main-spec]).

The function specs, built using DECLARE, are listed in the argument to
with-library. Chapter 71 describes with-library.

In addition to Gprog, the API spec contains Vprog, the list of global-
variable type-specs. This is computed automatically by the mk-varspecs
tactic, as shown at the beginning of verif-sumarray.v.

Each C function can call any of the other C functions in the API, so each
semax-body proof is a client of the entire API spec, that is, Vprog and
Gprog. You can see that in the statement of the semax-body lemma for the
-sumarray function:

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.

Here, f-sumarray is the actual function body (AST of the C code) as parsed
by clightgen; you can read it in sumarray.v. You can read body-sumarray
as saying, In the context of Vprog and Gprog, the function body f-sumarray
satisfies its specification sumarray-spec. We need the context in case
the sumarray function refers to a global variable (Vprog provides the
variable’s type) or calls a global function (Gprog provides the function’s
API spec).
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9 start_function
The predicate semax-body states the Hoare triple of the function body,
∆ ⊢ {Pre} c {Post}. Pre and Post are taken from the funspec for f , c is
the body of F, and the type-context ∆ is calculated from the global
type-context overlaid with the parameter- and local-types of the function.

To prove this, we begin with the tactic start-function, which takes care of
some simple bookkeeping and expresses the Hoare triple to be proved.

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.
Proof.
start-function.

The proof goal now looks like this:

Espec : OracleKind
a : val
sh : share
contents : list Z
size : Z
Delta-specs := abbreviate : PTree.t funspec
Delta := abbreviate : tycontext
SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ 0 ≤x ≤ Int.max-unsigned) contents
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS := abbreviate : statement
---------------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))

(Ssequence (Sset -i (Econst-int (Int.repr 0) tint)) MORE-COMMANDS)
POSTCONDITION
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First we have Espec, which you can ignore for now (it characterizes the
outside world, but sumarray.c does not do any I/O). Then a,sh,contents,size
are exactly the variables of the WITH clause of sumarray-spec.

The two abbreviations Delta-spec, Delta are the type-context in which
Floyd’s proof tactics will look up information about the types of the
program’s variables and functions. The hypotheses SH,H,H0 are exactly
the PROP clause of sumarray-spec’s precondition. The POSTCONDITION
is exactly the POST part of sumarray-spec.

To see the contents of an abbreviation, either (1) set your IDE to show
implicit arguments, or (2) unfold abbreviate in POSTCONDITION.

Below the line we have one proof goal: the Hoare triple of the function
body. In general, any C statement c might satisfy a Hoare-logic judgment
∆ ⊢ {P} c {R} when, in global context ∆, started in a state satisfying
precondition P, statement c is sure not to crash and, if it terminates, the
final state will satisfy R. We write the Hoare judgement in Coq as
semax (∆: tycontext) (P: environ→mpred) (c: statement) (R: ret-assert).

∆ is a type context, giving types of function parameters, local variables,
and global variables; and specifications (funspec) of global functions.

P is the precondition;
c is a command in the C language; and

R is the postcondition. Because a c statement can exit in differ-
ent ways (fall-through, continue, break, return), a ret-assert has
predicates for all of these cases.

Right after start-function, the command c is the entire function body.

Because we do forward Hoare-logic proof, we won’t care about the postcon-
dition until we get to the end of c, so here we hide it away in an abbrevi-
ation. Here, the command c is a long sequence starting with i=0;. . .more,
and we hide the more in an abbreviation MORE-COMMMANDS.
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The precondition of this semax has LOCAL and SEP parts taken directly
from the funspec (the PROP clauses have been moved above the line). The
statement (Sset -i (Econst-int (Int.repr 0) tint)) is the AST generated by
clightgen from the C statement i=0;.
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10 forward
We do Hoare logic proof by forward symbolic execution. On page 19 we
show the proof goal at the beginning of the sumarray function body. In a
forward Hoare logic proof of {P} i = 0;more {R} we might first apply the
sequence rule,

{P} i = 0; {Q} {Q}more {R}
{P} i = 0;more {R}

assuming we could derive some appropriate assertion Q. For many kinds
of statements (assignments, return, break, continue) this is done auto-
matically by the forward tactic, which applies a strongest-postcondition
style of proof rule to derive Q. When we execute forward here, the resulting
proof goal is,

Espec, a, sh, contents, size, Delta-spec, SH, H, H0 as before
Delta := abbreviate : tycontext
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS := abbreviate : statement
---------------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -i (Vint (Int.repr 0)); temp -a a;
temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))

(Ssequence (Sset -s (Econst-int (Int.repr 0) tuint)) MORE-COMMANDS)
POSTCONDITION

Notice that the precondition of this semax is really the postcondition Q of
the i=0; statement; it is the precondition of the next statement, s=0;. It’s
much like the precondition of i=0; what has changed?

• The LOCAL part contains temp -i (Vint (Int.repr 0)) in addition to
what it had before; this says that the local variable i contains
integer value zero.
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• the command is now s=0;more, where MORE-COMMANDS no
longer contains s=0;.

• Delta has changed; it now records the information that i is initial-
ized.

Applying the forward again will go through s=0; to yield a proof goal with
a LOCAL binding for the -s variable.

FORWARD WORKS ON SEVERAL KINDS OF C COMMANDS. In each of the
following cases, x must be a nonaddressable local variable, a temp.

c1; c2 Sequence of commands. The forward tactic will work on c1 first.
(c1; c2); c3 In this case, forward will re-associate the commands using

the seq-assoc axiom, and work on c1; (c2; c3).
x=E; Assignment statement. Expression E must not contain memory

dereferences (loads or stores using ∗prefix, suffix[], or -> operators).
No restrictions on the form of the precondition (except that it must
be in canonical form, PROP/LOCAL/SEP). The expression &p→next
is permitted, since it does not actually load or store (it just computes
an address).

x= *E; Memory load.
x= a[E]; Array load.
x= E→fld; Field load.
x= E→f1. f2; Nested field load; see Chapter 32.
x= E→f1[i]. f2; Fields and subscripts; see Chapter 32.
E1 = E2; Memory store. Expression E2 must not dereference memory.

Expression E1 must be equivalent to a single memory store via some
access path (see Chapter 32), and the precondition must contain an
appropriate storable data-at or field-at.

if (E) C1 else C2 For an if-statement, use forward-if and (perhaps)
provide a postcondition.

while (E) C For a while-loop, use the forward-while tactic (page 27) and
provide a loop invariant.

break; The forward tactic works.
continue; The forward tactic works.
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return E; Expression E must not dereference memory, and the pres-
ence/absence of E must match the nonvoid/void return type of the
function. The proof goal left by forward is to show that the precondi-
tion (with appropriate substitution for the abstract variable ret-var)
entails the function’s postcondition.

x = f (a1, . . . ,an); For a function call, use forward-call (see Chapter 20).
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11 Hint
In any VST proof state, running the hint tactic will print a suggestion (if
it can) that will help you make progress in the proof. In stepping through
the case studies described in this reference manual, insert hint. at any
point to see what it says.
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12 If, While, For
To do forward proof through if-statements, while-loops, and for-loops,
you need to provide additional information: join-postconditions, loop
invariants, etc. The tactics are forward-if, forward-while, forward-for,
forward-for-simple-bound.

If you’re not sure which tactic to use, and with how many arguments, just
use forward, and the error message will make a suggestion.

• if ethen s1 else s2; s3 . . .
Use forward-if Q, where Q is the join postcondition, the precondition
of statement s3. Q may be a full assertion (environ→mpred), or it
may be just a Prop, in which case it will be added to the current
precondition.

• if ethen s1 else s2; } . . .
When the if-statement appears at the end of a block, so the
postcondition is already known, you can do forward-if. That is,
you don’t need to supply a join postcondition if POSTCONDITION
is fully instantiated, without any unification variables. You can
unfold abbreviate in POSTCONDITION to see.

When one (or both) of your then/else branches exits by break,
continue, or return then you don’t need to supply a join postcondition.

• while (e) s; . . . (no break statements in s)
You write forward-while Q, where Q is a loop invariant. See Chap-
ter 13.

• while (e) s; . . . (with break statements in s)
You must treat this as if it were for (; e; ) s; see below.

• for (e1; e2; e3) s
Use a tactic for for-loops:
forward-for-simple-bound (Chapter 51),
forward-for (Chapter 52), or
forward-loop (Chapter 53).
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13 While loops
To prove a while loop by forward symbolic execution, you use the tactic
forward-while, and you must supply a loop invariant. Take the example of
the forward-while in progs/verif_sumarray.v. The proof goal is,

Espec, Delta-specs, Delta
a : val, sh : share, contents : list Z, size : Z
SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ 0 ≤x ≤ Int.max-unsigned) contents
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS, LOOP-BODY := abbreviate : statement
----------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))

(Ssequence
(Swhile (Ebinop Olt (Etempvar -i tint) (Etempvar -n tint) tint)

LOOP-BODY)
MORE-COMMANDS)

POSTCONDITION

A loop invariant is an assertion, almost always in the form of an exis-
tential EX...PROP(...)LOCAL(...)SEP(...). Each iteration of the loop has a
state characterized by a different value of some iteration variable(s), the
EX binds that value. The invariant for the sumarray loop is,

EX i: Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr i)); temp -n (Vint (Int.repr size));

temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a).
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The existential binds i, the iteration-dependent value of the local variable
named -i. In general, there may be any number of EX quantifiers.

The forward-while tactic will generate four subgoals to be proved:

1. the precondition (of the whole loop) implies the loop invariant;
2. the loop-condition expression type-checks (i.e., guarantees to evalu-

ate successfully);
3. the postcondition of the loop body implies the loop invariant;
4. the loop invariant (and negation of the loop condition) is a strong

enough precondition to prove the MORE-COMMANDS after the loop.

Let’s take a look at that first subgoal:

(above-the-line hypotheses elided)
1/4

ENTAIL Delta,
PROP()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

⊢EX i : Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr i));

temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))

SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

This is an entailment goal; Chapter 15 shows how to prove such goals.
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14 PROP( ) LOCAL( ) SEP( )
Each element of a SEP clause is a spatial predicate, that is, a predicate on
some part of the memory. The Coq type for a spatial predicate is mpred;
it can be thought of as mem→Prop (but is not quite the same, for quite
technical semantic reasons).

The SEP represents the separating conjunction of its spatial predicates.
When we write spatial predicates outside of a PROP/LOCAL/SEP, we use ∗
instead of semicolon to indicate separating conjunction.

The LOCAL part of an assertion describes the values of local variables.

A program assertion (precondition, postcondition, loop invariant, etc.) is
a predicate both on its local-var environ and its memory. Its Coq type is
environ→mpred. If you do the Coq command, Check (PROP()LOCAL()SEP())
then Coq replies, environ→mpred. We call assertions of this type lifted
predicates.

The canonical form of a lifted assertion is PROP(P⃗)LOCAL(Q⃗)SEP(R⃗),
where P⃗ is a list of propositions (Prop), where Q⃗ is a list of local-variable
definitions (localdef), and R⃗ is a list of base-level assertions (mpred). Each
list is semicolon-separated.

The existential quantifier EX can also be used on canonical forms, e.g.,
EX x:T, PROP(P⃗)LOCAL(Q⃗)SEP(R⃗).
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15 Entailments
An entailment in separation logic, P ⊢Q, says that any state satisfying P
must also satisfy Q. In Verifiable C, if P and Q are mpreds, then any mem
satisfying P must also satisfy Q. If P and Q are lifted predicates, then
any environ×mem satisfying P must also satisfy Q.

Usually we write lifted entailments as ENTAIL ∆,P ⊢Q in which ∆ is the
global type context, providing additional constraints on the state.

Verifiable C’s rule of consequence is,

ENTAIL ∆,P ⊢ P ′ semax ∆ P ′ c Q′ ENTAIL ∆,Q′ ⊢Q
semax ∆ P c Q

Using this axiom (called semax-pre-post) on a proof goal semax ∆ P c Q
yields three subgoals: another semax and two (lifted) entailments,
ENTAIL ∆,P ⊢ P ′ and ENTAIL ∆,Q ⊢ Q′. P and Q are typically in the
form PROP(P⃗)LOCAL(Q⃗)SEP(R⃗), perhaps with some EX quantifiers in the
front. The turnstile ⊢ is written in Coq as |--.

Let’s consider the entailment arising from forward-while in the
progs/verif_sumarray.v example:

H : 0 ≤size ≤ Int.max-signed
(other above-the-line hypotheses elided)

1/4
ENTAIL Delta,

PROP()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

⊢EX i : Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr i));

temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))

SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)
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We instantiate the existential with the only value that works here, zero:
Exists 0. Chapter 23 explains how to handle existentials with Intros and
Exists.

Now we use the entailer! tactic to solve as much of this goal as possible
(see Chapter 41). In this case, the goal solves entirely automatically. In
particular, 0 ≤ i ≤ size solves by lia; sublist 0 0 contents rewrites to nil; and
sum-Z nil simplifies to 0.

THE SECOND SUBGOAL of forward-while in progs/verif_sumarray.v is a
type-checking entailment, of the form ENTAIL ∆, PQR ⊢tc-expr ∆ e
where e is (the abstract syntax of) a C expression; in the particular
case of a while loop, e is the negation of the loop-test expression. The
assertion tc-expr ∆ e says that executing e won’t crash: all the variables
it references exist and are initialized; and it doesn’t divide by zero, et
cetera.

In this case, the entailment concerns the expression ¬(i < n),

ENTAIL Delta, PROP(. . .) LOCAL(. . .) SEP(. . .)
⊢tc-expr Delta

(Eunop Onotbool (Ebinop Olt (Etempvar -i tint) (Etempvar -n tint) tint)
tint)

This solves completely via the entailer! tactic. To see why that is, instead of
doing entailer!, do unfold tc-expr; simpl. You’ll see that the right-hand side
of the entailment simplifies down to !!True, (equivalent to TT, the “true”
mpred). That’s because the typechecker is calculational, as Chapter 25 of
Program Logics for Certified Compilers explains.
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16 Array subscripts
THE THIRD SUBGOAL of forward-while in progs/verif_sumarray.v is the body
of the while loop: {x=a[i]; s+=x; i++;}.

This can be handled by three forward commands, but the first one needs a
bit of extra help. To see why, try doing forward just before the assert-PROP
instead of after. You’ll see an error message saying that it can’t prove
0 ≤ i < Zlength contents. Indeed, the command x=a[i]; is safe only if i is
in-bounds of the array a.

Let’s examine the proof goal:

SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ 0 ≤x ≤ Int.max-unsigned) contents
i : Z
HRE : i < size
H1 : 0 ≤ i ≤size
--------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -a a; temp -i (Vint (Int.repr i));
temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))

(Ssequence
(Sset -x

(Ederef
(Ebinop Oadd (Etempvar -a (tptr tuint)) (Etempvar -i tint)

(tptr tuint)) tuint)) MORE-COMMANDS) POSTCONDITION

The Coq variable i was introduced automatically by forward-while from
the existential variable, the EX i:Z of the loop invariant.
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Going forward through x=a[i]; will be enabled by the data-at in the
precondition, as long as the subscript value is less than the length
of contents. One important property of data-at π (tarray τ n) σ p is that
n =Zlength(σ). If we had that fact above the line, then (using assumptions
HRE and H) it would be easy to prove 0 ≤ i < Zlength contents.

Therefore, we write,

assert-PROP (Zlength contents = size). {
entailer!. do 2 rewrite Zlength-map. reflexivity.

}

Chapter 43 describes assert-PROP, which (like Coq’s standard assert) will
put Zlength contents=size above the line. The first subgoal of assert-PROP
requires us to prove the proposition, using facts from the current Hoare
precondition (which would not be accessible to Coq’s standard assert).
The reason this one is so easily provable is that entailer! extracts the
n =Zlength(σ) fact from data-at and puts it above the line.

The second subgoal is just like the subgoal we had before doing
assert-PROP, but with the new proposition above the line. Now that
H-2: Zlength contents = size is above the line, forward succeeds on the
array subscript.

Two more forward commands take us to the end of the loop body.
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17 At the end of the loop body
In progs/verif_sumarray.v, at the comment “Now we have reached the end
of the loop body,” it is time to prove that the current precondition (which
is the postcondition of the loop body) entails the loop invariant. This is
the proof goal:

H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ 0 ≤x ≤ Int.max-unsigned) contents
HRE : i < size
H1 : 0 ≤ i ≤size

(other above-the-line hypotheses elided)
ENTAIL Delta,

PROP()
LOCAL(temp -i (Vint (Int.add (Int.repr i) (Int.repr 1)));

temp -s
(force-val

(sem-add-default tint tint
(Vint (Int.repr (sum-Z (sublist 0 i contents))))
(Znth i (map Vint (map Int.repr contents)))));

temp -x (Znth i (map Vint (map Int.repr contents)));
temp -a a; temp -n (Vint (Int.repr size)))

SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)
⊢ EX a0 : Z,

PROP(0 ≤a0 ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr a0));
temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 a0 contents)))))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

The right-hand side of this entailment is just the loop invariant. As usual
at the end of a loop body, there is an existentially quantified variable
that must be instantiated with an iteration-dependent value. In this case
it’s obvious: the quantified variable represents the contents of C local
variable -i, so we do, Exists (i+1).
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The resulting entailment has many trivial parts and a nontrivial residue.
The usual way to get to the hard part is to run entailer!, which we do now.
After clearing away the irrelevant hypotheses, we have:

H : 0 ≤Zlength contents ≤ Int.max-signed
HRE : i < Zlength contents
H1 : 0 ≤ i ≤Zlength contents
--------------------------------------(1/1)
Vint (Int.repr (sum-Z (sublist 0 (i + 1) contents))) =
Vint (Int.repr (sum-Z (sublist 0 i contents) + Znth i contents))

Applying f-equal twice, leaves the goal,

sum-Z (sublist 0 (i + 1) contents) =
sum-Z (sublist 0 i contents) + Znth i contents

Now the lemma sublist-split is helpful here:

sublist-split: ∀l m hal, 0≤ l ≤ m ≤ h ≤ |al| →
sublist l h al = sublist l m al ++ sublist m h al

So we do, rewrite (sublist-split 0 i (i+1)) by lia. A bit more rewriting with
the theory of sum-Z and sublist finishes the proof.

See also: Chapter 61 (sublist).
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18 Returning from a function
In progs/verif_sumarray.v, at the comment “After the loop,” we have
reached the return statement. The forward tactic works here, leaving a
proof goal that the precondition of the return entails the postcondition
of the function-spec. (Sometimes the entailment solves automatically,
leaving no proof goal at all.) The goal is a lowered entailment (on mpred
assertions).

H4 : Forall (value-fits tuint) (map Vint (map Int.repr contents))
H2 : field-compatible (Tarray tuint (Zlength . . .) noattr) [] a

(other above-the-line hypotheses elided)
data-at sh (tarray tuint (Zlength . . .)) (map Vint (map Int.repr contents)) a
⊢ !!(Vint (Int.repr (sum-Z contents)) =

Vint (Int.repr (sum-Z (sublist 0 i contents))))

The left-hand side of this entailment is a spatial predicate (data-at).
Purely nonspatial facts (H4 and H2) derivable from it have already been
inferred and moved above the line by saturate-local (see Chapter 37).

In general the right-hand side of a lowered entailment is !!P && R, where
P is a conjunction of propositions (Prop) and R is a separating conjunction
of spatial predicates. The !! operator converts a Prop into an mpred.

This entailment’s right-hand side has no spatial predicates. That’s
because, in the sumarray function, the SEP clause of the funspec’s
postcondition had exactly the same data-at clause as we see here in
the entailment precondition, and the entailment-solver called by forward
has already cleared it away.

We can proceed by using entailer! The remaining subgoal solves easily in
the theory of sublists. The proof of the function sumarray is now complete.
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19 Global variables and main()
C programs may have “extern” global variables, either with explicit
initializers or initialized by default. Any function that accesses a global
variable must have the appropriate spatial assertions in its funspec’s
precondition (and postcondition). But the main function is special: it has
spatial assertions for all the global variables. Then it may pass these on,
piecemeal, to the functions it calls on an as-needed basis.

The function-spec for the sumarray program’s main is,

Definition main-spec :=
DECLARE -main

WITH gv : globals
PRE [ ] main-pre prog gv
POST [ tint ]

(∗ application-specific postcondition ∗)
PROP()
RETURN(Vint (Int.repr (1+2+3+4)))
SEP(TT).

The first four lines are always the same for any program. main-pre
calculates the precondition automatically from the list of extern global
variables and initializers of the program.

Now, when we prove that main satisfies its funspec,

Lemma body-main: semax-body Vprog Gprog f-main main-spec.
Proof.
start-function.

the start-function tactic “unpacks” main-pre into an assertion:
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gv: globals
--------------------------------------(1/1)
semax Delta
(PROP () LOCAL(gvars gv)
SEP(data-at Ews (tarray tuint 4)

(map Vint [Int.repr 1; Int.repr 2; Int.repr 3; Int.repr 4]) (gv -four)))
(. . . function body. . . )
POSTCONDITION

The LOCAL clause expresses the function-precondition’s GLOBALS(gv),
constraining the global-variable map gv to the link-time environment.
See Chapter 35.

The SEP clause means that there’s data of type “array of 4 integers” at
address (gv -four), with access permission Ews and contents [1;2;3;4].
Ews stands for “external write share,” the standard access permission of
extern global writable variables. See Chapter 46.

The sumarray program’s main-spec postcondition is specific to this program:
we say that main returns the value 1+2+3+4.

The postcondition’s SEP clause says TT; we cannot say simply SEP()
because that is equivalent to emp in separation logic, enforcing the empty
resource. But memory is not empty: it still contains all the initialized
extern global variable four. So we give a looser spatial postcondition, TT
(equivalent to True in separation logic).
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20 Function calls
Continuing our example, the Lemma body-main in verif_sumarray.v:

Now it’s time to prove the function-call statement, s = sumarray(four,4).
When proving a function call, one must supply a witness for the WITH
clause of the function-spec. The -sumarray function’s WITH clause
(page 14) starts,

Definition sumarray-spec :=
DECLARE -sumarray
WITH a: val, sh : share, contents : list Z, size: Z

so the type of the witness will be (val∗(share∗(list Z ∗ Z))). To choose
the witness, examine your actual parameter values (along with the
precondition of the funspec) to see what witness would be consistent;
here, we use (v-four,Ews,four-contents,4) as follows:

forward-call (v-four,Ews,four-contents,4).

The forward-call tactic (usually) leaves subgoals: you must prove that your
current precondition implies the funspec’s precondition. Here, these solve
easily, as shown in the proof script.

Finally, we are at the return statement. See Chapter 18. In this case, the
forward tactic is able to prove (using a form of the entailer tactic) that the
current assertion implies the postcondition of -main.
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21 Tying all the functions together
We build a whole-program proof by composing together the proofs of all the
function bodies. Consider Gprog, the list of all the function-specifications:

Definition Gprog : funspecs := sumarray-spec :: main-spec :: nil.

Each semax-body proof says, assuming that all the functions I might
call behave as specified, then my own function-body indeed behaves as
specified:

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.

Note that all the functions I might call might even include “myself,” in the
case of a recursive or mutually recursive function.

This might seem like circular reasoning, but (for partial correctness)
it is actually sound—by the miracle of step-indexed semantic models,
as explained in Chapters 18 and 39 of Program Logics for Certified
Compilers.

The rule for tying the functions together is called semax-func, and its use
is illustrated in this theorem, the main proof-of-correctness theorem for
the program sumarray.c:

Lemma prog-correct: semax-prog prog Vprog Gprog.
Proof.
prove-semax-prog.
semax-func-cons body-sumarray.
semax-func-cons body-main.
Qed.

The calls to semax-func-cons must appear in the same order as the
functions appear in prog.(prog-defs).
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22 Separation logic: EX, ∗, emp, !!
These are the operators and primitives of spatial predicates, that is, the
kind that can appear as conjuncts of a SEP.

R ::= emp empty
TT True
FF False
R1 ∗R2 separating conjunction
R1 && R2 ordinary conjunction
field_at π τ fld v p “field maps-to”
data_at π τ v p “maps-to”
array_at τ π v lo hi array slice
!!P pure proposition
EX x : T, R existential quantification
ALL x : T, R universal quantification
R1∥R2 disjunction
wand R R′ magic wand R −∗ R′

. . . other operators, including user definitions
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23 EX, Intros, Exists
In a canonical-form lifted assertion, existentials can occur at the outside,
or in one of the base-level conjuncts within the SEP clause. The left-hand
side of this assertion has both:

ENTAIL ∆, (∗ this example in progs/tutorial1.v ∗)
EX x:Z,
PROP(0≤x) LOCAL(temp -i (Vint (Int.repr x)))
SEP(EX y:Z, !!(x < y) && data-at π tint (Vint (Int.repr y)) p)

⊢EX u: Z,
PROP(0<u) LOCAL()
SEP(data-at π tint (Vint (Int.repr u)) p)

To prove this entailment, one can first move x and y “above the line” by
the tactic Intros a b:

a: Z
b: Z
H: 0 ≤a
H0: a < b

-------------------------------------------------------------------------------
ENTAIL ∆,

PROP() LOCAL(temp -i (Vint (Int.repr a)))
SEP(data-at π tint (Vint (Int.repr b)) p)

⊢EX u: Z,
PROP(0< u) LOCAL()
SEP(data-at π tint (Vint (Int.repr u)) p)

One might just as well say Intros x y to use those names instead of
a b. Note that the propositions (previously hidden inside existential
quantifiers) have been moved above the line by Intros. Also, if there had
been any separating-conjunction operators ∗ within the SEP clause, those
will be “flattened” into semicolon-separated conjuncts within SEP.

Sometimes, even when there are no existentials to introduce, one wants
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to move PROP propositions above the line and flatten the ∗ operators into
semicolons. One can just say Intros with no arguments to do that.

If you want to Intro an existential without PROP-introduction and
∗-flattening, you can just use Intro a, instead of Intros a.

Then, instantiate u by Exists b.

a: Z
b: Z
H: 0 ≤a
H0: a < b

-------------------------------------------------------------------------------
ENTAIL ∆,

PROP() LOCAL(temp -i (Vint (Int.repr a)))
SEP(data-at π tint (Vint (Int.repr b)) p)

⊢PROP(0< b) LOCAL()
SEP(data-at π tint (Vint (Int.repr b)) p)

This entailment proves straightforwardly by entailer!.

The EExists tactic takes no argument; it instantiates the existential with
a unification variable (much like Coq’s eexists versus exists).
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24 Integers: nat, Z, int
Coq’s standard library has the natural numbers nat and the integers Z.

C-language integer values are represented by the type Int.int (or just int
for short), which are 32-bit two’s complement signed or unsigned integers
with mod-232 arithmetic. Chapter 57 describes the operations on the int
type.

For most purposes, specifications and proofs of C programs should use Z
instead of int or nat. Subtraction doesn’t work well on naturals, and that
screws up many other kinds of arithmetic reasoning. Only when you are
doing direct natural-number induction is it natural to use nat, and so you
might then convert using Z.to-nat to do that induction.

Conversions between Z and int are done as follows:

Int.repr: Z → int.
Int.unsigned: int →Z.
Int.signed: int →Z.

with the following lemmas:

Int.repr_unsigned
Int.repr(Int.unsigned z) = z

Int.unsigned_repr
0≤ z ≤ Int.max_unsigned

Int.unsigned(Int.repr z) = z

Int.repr_signed
Int.repr(Int.signed z) = z

Int.signed_repr
Int.min_signed≤ z ≤ Int.max_signed

Int.signed(Int.repr z) = z

Int.repr truncates to a 32-bit twos-complement representation (losing
information if the input is out of range). Int.signed and Int.unsigned are
different injections back to Z that never lose information.
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When doing proofs about signed integers, you must prove that your
integers never overflow; when doing proofs about unsigned integers,
it’s still a good idea to prove that you avoid overflow. That is, if the C
variable -x contains the value Vint (Int.repr x), then make sure x is in the
appropriate range. Let’s assume that -x is a signed integer, i.e. declared
in C as int x; then the hypothesis is,

H: Int.min-signed ≤ x ≤ Int.max-signed (∗ this example in progs/tutorial1.v ∗)

If you maintain this hypothesis “above the line”, then Floyd’s tactical
proof automation can solve goals such as Int.signed (Int.repr x) = x. Also,
to solve goals such as,

...
H2 : 0 ≤ n ≤ Int.max-signed (∗ this example in progs/tutorial1.v ∗)
...
------------------------
Int.min-signed ≤ 0 ≤ n

you can use the rep-lia tactic (see ??), which is basically just lia with knowl-
edge of the values of Int.min-signed, Int.max-signed, and Int.max-unsigned.

To take advantage of this, put conjuncts into the PROP part of your
function precondition such as 0 ≤ i < n; n ≤ Int.max_signed. Then the
start-function tactic will move them above the line, and the other tactics
mentioned above will make use of them.

To see an example in action, look at progs/verif-sumarray.v. The funspec’s
precondition contains,

PROP(. . . 0 ≤size ≤ Int.max-signed;
Forall (fun x ⇒ 0 ≤x ≤ Int.max-unsigned) contents)

to ensure that size is representable as a nonnegative signed integer, and
each element of contents is representable as an unsigned.
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25 Int, Int8, Int16, Int64, Ptrofs
C programs use signed and unsigned integers of various sizes: 8-bit
(signed char, unsigned char), 16-bit (signed short, unsigned short), 32-bit
(int, unsigned int), 64-bit (long, unsigned long).

A C compiler may be “32-bit” in which case sizeof(void∗)=4 or “64-bit”
in which case sizeof(void∗)=8. The macro size-t is defined in the C
standard library as a typedef for the appropriate signed integer, typically
unsigned int on a 32-bit system and unsigned long on a 64-bit system.

To talk about integer values in all of these sizes, which have n-bit modular
arithmetic (if unsigned) or n-bit twos-complement arithmetic (if signed),
CompCert has several instantiations of the Integers module:

Int8 for char (signed or unsigned)
Int16 for short (signed or unsigned)
Int for int (signed or unsigned)
Int64 for long (signed or unsigned)
Ptrofs for size_t

where Ptrofs is isomorphic to the Int module (in 32-bit systems) and to
the Int64 module (in 64-bit systems). You pronounce “Ptrofs” as “pointer
offset” because it is frequently used to indicate the distance between two
pointers into the same object.

The following definitions are used for shorthand:

Definition int = Int.int.
Definition int64 = Int64.int.
Definition ptrofs = Ptrofs.int.
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26 Values: Vint,Vptr
Definition block : Type := positive.

Inductive val: Type :=
| Vundef: val
| Vint: int →val
| Vlong: int64 →val
| Vfloat: float →val
| Vsingle: float32 →val
| Vptr: block →ptrofs →val.

Vundef is the undefined value—found, for example, in an uninitialized
local variable.

Vint(i) is an integer value, where i is a CompCert 32-bit integer. These
32-bit integers can also represent short (16-bit) and char (8-bit) values.

Vfloat( f ) is a 64-bit floating-point value.
Vsingle( f ) is a 32-bit floating-point value.

Vptr b z is a pointer value, where b is an abstract block number and z
is an offset within that block. Different malloc operations, or different
extern global variables, or stack-memory-resident local variables, will
have different abstract block numbers. Pointer arithmetic must be done
within the same abstract block, with (Vptrb z)+ (Vint i) = Vptrb (z+ i).
Of course, the C-language + operator first multiplies i by the size of the
array-element that Vptrb z points to.

Vundef is not always treated as distinct from a defined value. For example,
p Vint5 ⊢ p Vundef, where is the data-at operator (Chapter 31).
That is, p Vundef really means ∃v, p v. Vundef could mean “truly
uninitialized” or it could mean “initialized but arbitrary.”
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27 C types
CompCert C describes C’s type system with inductive data types.

Inductive signedness := Signed | Unsigned.
Inductive intsize := I8 | I16 | I32 | IBool.
Inductive floatsize := F32 | F64.

Record attr : Type := mk-attr {
attr-volatile: bool; attr-alignas: option N

}.
Definition noattr := {| attr-volatile := false; attr-alignas := None |}.

Inductive type : Type :=
| Tvoid: type
| Tint: intsize →signedness →attr →type
| Tlong: signedness →attr →type
| Tfloat: floatsize →attr →type
| Tpointer: type →attr →type
| Tarray: type →Z →attr →type
| Tfunction: typelist →type →calling-convention →type
| Tstruct: ident →attr →type
| Tunion: ident →attr →type

with typelist : Type :=
| Tnil: typelist
| Tcons: type →typelist →typelist.

We have abbreviations for commonly used types:

Definition tint = Tint I32 Signed noattr.
Definition tuint = Tint I32 Unsigned noattr.
Definition tschar = Tint I8 Signed noattr.
Definition tuchar = Tint I8 Unsigned noattr.
Definition tarray (t: type) (n: Z) = Tarray t n noattr.
Definition tptr (t: type) := Tpointer t noattr.
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28 CompSpecs
The C language has a namespace for struct- and union-identifiers, that is,
composite types. In this example, struct foo {int value; struct foo ∗tail} a,b;
the “global variables” namespace contains a,b, and the “struct and union”
namespace contains foo.

When you use CompCert clightgen to parse myprogram.c into myprogram.v,
the main definition it produces is prog, the AST of the entire C program:

Definition prog : Clight.program := {| prog-types := composites; ... |}.

To interpret the meaning of a type expression, we need to look up
the names of its struct identifiers in a composite environment. This
environment, along with various well-formedness theorems about it, is
built from prog as follows:

Require Import VST.floyd.proofauto. (∗ Import Verifiable C library ∗)
Require Import myprogram. (∗ AST of my program ∗)
Instance CompSpecs : compspecs. Proof. make-compspecs prog. Defined.

The make-compspecs tactic automatically constructs the composite specifi-
cations from the program. As a typeclass Instance, CompSpecs is supplied
automatically as an implicit argument to the functions and predicates
that interpret the meaning of types:

Definition sizeof {env: composite-env} (t: type) : Z := ...
Definition data-at- {cs: compspecs} (sh: share) (t: type) (v: val) := ...

@sizeof (@cenv-cs CompSpecs) (Tint I32 Signed noattr) = 4.
sizeof (Tint I32 Signed noattr) = 4.
sizeof (Tstruct -foo noattr) = 8.
@data-at- CompSpecs sh t v ⊢data-at- sh t v

When you have two separately compiled .c files, each will have its own
prog and its own compspecs. See Chapter 79.
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29 reptype
For each C-language data type, we define a representation type, the Type
of Coq values that represent the contents of a C variable of that type.

Definition reptype {cs: compspecs} (t: type) : Type := . . . .

Lemma reptype-ind: ∀(t: type),
reptype t =

match t with
| Tvoid ⇒ unit
| Tint - - - ⇒ val
| Tlong - - ⇒ val
| Tfloat - - ⇒ val
| Tpointer - - ⇒ val
| Tarray t0 - - ⇒ list (reptype t0)
| Tfunction - - - ⇒ unit
| Tstruct id - ⇒ reptype-structlist (co-members (get-co id))
| Tunion id - ⇒ reptype-unionlist (co-members (get-co id))
end

reptype-structlist is the right-associative cartesian product of all the
(reptypes of) the fields of the struct. For example,

struct list {int hd; struct list ∗tl;};
struct one {struct list ∗p};
struct three {int a; struct list ∗p; double x;};

reptype (Tstruct -list noattr) = (val∗val)
reptype (Tstruct -one noattr) = val
reptype (Tstruct -three noattr) = (val∗(val∗val))

We use val instead of int for the reptype of an integer variable, because
the variable might be uninitialized, in which case its value will be Vundef.
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30 Uninitialized data, default_val
CompCert represents uninitialized atomic (integer, pointer, float) values
as Vundef : val.

The dependently typed function default-val calculates the undefined value
for any C type:

default-val: ∀ {cs: compspecs} (t: type), reptype t.

For any C type t, the default value for variables of type t will have Coq
type (reptype t).

For example:

struct list {int hd; struct list ∗tl;};

default-val tint = Vundef
default-val (tptr tint) = Vundef
default-val (tarray tint 4) = [Vundef; Vundef; Vundef; Vundef]
default-val (tarray t n) = list-repeat (Z.to-nat n) (default-val t)
default-val (Tstruct -list noattr) = (Vundef, Vundef)
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31 data_at
Consider a C program with these declarations:

struct list {int hd; struct list ∗tl;} L;
int f(struct list a[5], struct list ∗p) { ... }

Assume these definitions in Coq:

Definition t-list := Tstruct -list noattr.
Definition t-arr := Tarray t-list 5 noattr.

Somewhere inside f, we might have the assertion,

PROP() LOCAL(temp -a a, temp -p p, gvars gv)
SEP(data-at Ews t-list (Vint (Int.repr 0), nullval) (gv -L);

data-at π t-arr (list-repeat (Z.to-nat 5) (Vint (Int.repr 1), p)) a;
data-at π t-list (default-val t-list) p)

This assertion says, “Local variable -a contains address a, -p contains
address p, global variable -L is at address (gv -L). There is a struct list
at (gv -L) with permission-share Ews (“extern writable share”), whose hd
field contains 0 and whose tl contains a null pointer. At address a there
is an array of 5 list structs, each with hd=1 and tl=p, with permission
π; and at address p there is a single list cell that is uninitialized1, with
permission π.”

In pencil-and-paper separation logic, we write q i to mean
data-at Tsh tint (Vint (Int.repr i)) q. We write (gv _L) (0, NULL) to mean
data-at Tsh t-list (Vint (Int.repr 0), nullval) (gv -L). We write p (_,_) to
mean data-at π t-list (default-val t-list) p.

In fact, the definition data-at- is useful for the situation p _:

Definition data-at- {cs: compspecs} sh t p := data-at sh t (default-val t) p.

1Uninitialized, or initialized but we don’t know or don’t care what its value is
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32 field_at
Consider the example in progs/nest2.c

struct a {double x1; int x2;};
struct b {int y1; struct a y2;};
struct b p;

The command i = p.y2.x2; does a nested field load. We call y2.x2 the field
path. The precondition for this command might include the assertion,

LOCAL(gvars gv) SEP(data-at sh t-struct-b (u,(v,w)) (gv -pb))

The postcondition (after the load) would include the new LOCAL fact,
temp -i w.

The tactic (unfold-data-at (data-at ---(gv -p))) changes the SEP part of the
assertion as follows:

SEP(field-at Ews t-struct-b (DOT -y1) (Vint u) (gv -pb);
field-at Ews t-struct-b (DOT -y2) (Vfloat v, Vint w) (gv -pb))

and then doing (unfold-field-at 2%nat) unfolds the second field-at,

SEP(field-at Ews t-struct-b (DOT -y1) (Vint u) (gv -pb);
field-at Ews t-struct-b (DOT -y2 DOT -x1) (Vfloat v) (gv -pb);
field-at Ews t-struct-b (DOT -y2 DOT -x2) (Vint w) (gv -pb))

The third argument of field-at represents the path of structure-fields
that leads to a given substructure. The empty path (nil) works too; it
“leads” to the entire structure. In fact, data-at π τ v p is just short for
field-at π τ nil v p.

Arrays and structs may be nested together, in which case the field path
may also contain array subscripts at the appropriate places, using the
notation SUB i along with DOT field.



54

33 data_at_, field_at_
An uninitialized data structure of type t, or a data structure with don’t-
care values, is said to contain the default value for t, default-val(t).

data-at sh t (default-val t) p

We abbreviate this with the definition data-at-:

data-at- sh t p = data-at sh t (default-val t) p

Similarly, field-at- sh t gfs p = field-at sh t gfs (default-val t) p.
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34 reptype’, repinj
This chapter is advanced material, describing a feature that is some-
times convenient but never necessary. You can skip this chapter.

struct a {double x1; int x2;};
struct b {int y1; struct a y2;} p;
repinj: ∀t: type, reptype’ t →reptype t
reptype t-struct-b = (val∗(val∗val))
reptype’ t-struct-b = (int∗(float∗int))
repinj t_struct_b (i, (x, j)) = (Vint i, (Vfloat x, Vint j))

The reptype function maps C types to the the corresponding Coq types
of (possibly uninitialized) values. When we know a variable is definitely
initialized, it may be more natural to use int instead of val for integer
variables, and float instead of val for double variables. The reptype’
function maps C types to the Coq types of (definitely initialized) values.

Definition reptype’ {cs: compspecs} (t: type) : Type := . . . .
Lemma reptype’-ind: ∀(t: type),
reptype t =

match t with
| Tvoid ⇒ unit
| Tint - - - ⇒ int
| Tlong - - ⇒ Int64.int
| Tfloat - - ⇒ float
| Tpointer - - ⇒ pointer-val
| Tarray t0 - - ⇒ list (reptype’ t0)
| Tfunction - - - ⇒ unit
| Tstruct id - ⇒ reptype’-structlist (co-members (get-co id))
| Tunion id - ⇒ reptype’-unionlist (co-members (get-co id))
end

The function repinj maps an initialized value to the type of possibly
uninitialized values:

Definition repinj {cs: compspecs} (t: type) : reptype’ t →reptype t := . . .
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The program progs/nest2.c (verified in progs/verif_nest2.v) illustrates the
use of reptype’ and repinj.

struct a {double x1; int x2;};
struct b {int y1; struct a y2;} p;

int get(void) { int i; i = p.y2.x2; return i; }
void set(int i) { p.y2.x2 = i; }

Our API spec for get reads as,

Definition get-spec :=
DECLARE -get
WITH v : reptype’ t-struct-b, gv : globals
PRE []

PROP() LOCAL(gvars gv)
SEP(data-at Ews t-struct-b (repinj - v) (gv -p))

POST [ tint ]
PROP() RETURN(Vint (snd (snd v)))
SEP(data-at Ews t-struct-b (repinj - v) (gv -p)).

In this program, reptype’ t-struct-b = (int∗(float∗int)), and
repinj t_struct_b (i, (x, j)) = (Vint i, (Vfloat x, Vint j)).

One could also have specified get without reptype’ at all:

Definition get-spec :=
DECLARE -get
WITH i: Z, x: float, j: int, gv : globals
PRE []

PROP() LOCAL(gvars gv)
SEP(data-at Ews t-struct-b (Vint (Int.repr i), (Vfloat x, Vint j)) (gv -p))

POST [ tint ]
PROP() RETURN(Vint j)
SEP(data-at Ews t-struct-b (Vint (Int.repr i), (Vfloat x, Vint j)) (gv -p)).
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35 LOCAL defs: temp, lvar, gvars
The LOCAL part of a PROP()LOCAL()SEP() assertion is a list of localdefs
that bind variables to their values or addresses.

Inductive localdef : Type :=
| temp: ident →val → localdef
| lvar: ident →type →val → localdef
| gvars: globals → localdef.

temp i v binds a nonaddressable local variable i to its value v.
lvar i t v binds an addressable local variable i (of type t) to its address v.
gvars G describes the addresses of all global variables. Here, G maps
global variable identifiers to their addresses (globals is just (ident →val)).

The contents of an addressable (local or global) variable is on the heap,
and can be described in the SEP clause.

int g=2;
int f(void) { int g; int ∗p = &g; g=6; return g; }

In this program, the global variable g is shadowed by the local variable g.
In an assertion inside the function body, one could still write

PROP() LOCAL(temp -p q; lvar -g tint q; gvars G}
SEP(data-at Ews tint (Vint (Int.repr 2)) (G -g);

data-at Tsh tint (Vint (Int.repr 6)) q)

to describe a shadowed global variable -g that is still there in memory but
(temporarily) cannot be referred to by its name in the C program.
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36 go_lower
Normally one does not use this tactic directly, it is invoked as the
first step of entailer or entailer!

Given a lifted entailment ENTAIL ∆, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗) ⊢S,
one often wants to prove it at the base level: that is, with all of P⃗ moved
above the line, with all of Q⃗ out of the way, just considering the base-level
separation-logic conjuncts R⃗.

When ∆, P⃗,Q⃗, R⃗ are concrete, the go-lower tactic does this. Concrete means
that the P⃗,Q⃗ are nil-terminated lists (not Coq variables) that every
element of Q⃗ is manifestly a localdef (not hidden in Coq abstractions),
the identifiers in Q⃗ are (computable to) ground terms, and the analogous
(tree) property for ∆. It is not necessary that ∆, P⃗,Q⃗, R⃗ be fully ground
terms: Coq variables (and other Coq abstractions) can appear anywhere
in P⃗ and R⃗ and in the value parts of ∆ and Q⃗. When the entailment is
not fully concrete, or when there existential quantifiers outside PROP, the
tactic old-go-lower can still be useful.

go-lower moves the propositions P⃗ above the line; when a proposition is
an equality on a Coq variable, it substitutes the variable.

For each localdef in Q⃗ (such as temp i v), go-lower looks up i in ∆ to derive
a type-checking fact (such as tc-val t v), then introduces it above the line
and simplifies it. For example, if t is tptr tint, then the typechecking fact
simplifies to is-pointer-or-null v.

Then it proves the localdefs in S, if possible. If there are still some
local-environment dependencies remaining in S, it introduces a variable
rho to stand for the run-time environment.

The remaining goal will be of the form R⃗ ⊢ S′, with the semicolons in
R⃗ replaced by the separating conjunction ∗. S′ is the residue of S after
lowering to the base separation logic and deleting its (provable) localdefs.
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37 saturate_local
Normally one does not use this tactic directly, it is invoked by
entailer or entailer!

To prove an entailment R1 ∗R2 ∗ . . .∗Rn ⊢!!(P ′
1 ∧ . . .P ′

n)&&R′
1 ∗ . . .∗R′

m,
first extract all the local (nonspatial) facts from R1∗R2∗. . .∗Rn, use them
(along with other propositions above the line) to prove P ′

1∧. . .P ′
n, and then

work on the separation-logic (spatial) conjuncts R1∗. . .∗Rn ⊢ R′
1∗. . .∗R′

m.

An example local fact: data-at Ews (tarray tint n) v p ⊢ !! (Zlength v = n).
That is, the value v in an array “fits” the length of the array.

The Hint database saturate-local contains all the local facts that can be
extracted from individual spatial conjuncts:

field-at-local-facts:
field-at π t path v p ⊢ !!(field-compatible t path p

∧ value-fits (nested-field-type t path) v)
data-at π t v p ⊢ !!(field-compatible t nil p ∧ value-fits t v)

memory-block-local-facts:
memory-block π n p ⊢ !! isptr p

The assertion (Zlength v = n) is actually a consequence of value-fits when
t is an array type. See Chapter 39.

If you create user-defined spatial terms (perhaps using EX, data-at, etc.),
you can add hints to the saturate-local database as well.

The tactic saturate-local takes a proof goal of the form R1∗R2∗ . . .∗Rn ⊢ S
and adds saturate-local facts for each of the Ri, though it avoids adding
duplicate hypotheses above the line.
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38 field_compatible, field_address
CompCert C light comes with an “address calculus.” Consider this
example:

struct a {double x1; int x2;};
struct b {int y1; struct a y2;};
struct a ∗pa; int ∗q = &(pa→y2.x2);

Suppose the value of -pa is p. Then the value of -q is p+δ; how can we
reason about δ?

Given type t such as Tstruct -b noattr, and path such as (DOT -y2 DOT -x2),
then (nested-field-type t path) is the type of the field accessed by that path,
in this case tint; (nested-field-offset t path) is the distance (in bytes) from
the base of t to the address of the field, in this case (on a 32-bit machine)
12 or 16, depending on the field-alignment conventions of the target
machine (and the compiler).

On the Intel x86 architecture, where doubles need not be 8-byte-aligned,
we have,

data-at π t-struct-b (i, ( f , j)) p ⊢
data-at π tint i p ∗ data-at π t-struct-a ( f , j) (offset-val p 12)

but the converse is not valid:

data-at π tint i p ∗ data-at π t-struct-a ( f , j) (offset-val p 12)
̸⊢ data-at π t-struct-b (i, ( f , j)) p

The reasons: we don’t know that p+12 satisfies the alignment require-
ments for struct b; we don’t know whether p+12 crosses the end-of-
memory boundary. That entailment would be valid in the presence of this
hypothesis: field-compatible t-struct-b nil p : Prop.
which says that an entire struct b value can fit at address p. Note that
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this is a nonspatial assertion about addresses, independent of the contents
of memory.

In order to assist with reasoning about reassembly of data structures,
saturate-local (and therefore entailer) puts field-compatible assertions above
the line; see Chapter 37.

Sometimes one needs to name the address of an internal field—for
example, to pass just that field to a function. In that case, one could use
field-offset, but it is better to use field-address:

Definition field-address (t: type) (path: list gfield) (p: val) : val :=
if field-compatible-dec t path p
then offset-val (Int.repr (nested-field-offset t path)) p
else Vundef

That is, field-address has “baked in” the fact that the offset is “compatible”
with the base address (is aligned, has not crossed the end-of-memory
boundary). Therefore we get a valid converse for the example above:

data-at π tint i p
∗ data-at π t-struct-a ( f , j) (field-address t-struct-b (DOT -y2 DOT -x2) p)
⊢ data-at π t-struct-b (i, ( f , j)) p

FIELD_ADDRESS VS FIELD_ADDRESS0. You use field-address t path p to
indicate that p points to at least one thing of the appropriate field type
for t.path, that is, the type nested-field-type t path.

Sometimes when dealing with arrays, you want a pointer that might
possibly point just one past the end of the array; that is, points to at least
zero things. In this case, use field-address0 t path p, which is built from
field-compatible0. It has slightly looser requirements for how close p can
be to the end of memory.
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39 value_fits
The spatial maps-to assertion, data-at π t v p, says that there’s a value v
in memory at address p, filling the data structure whose C type is t (with
permission π). A corollary is value-fits t v: v is a value that actually can
reside in such a C data structure.

Value_fits is a recursive, dependently typed relation that is easier
described by its induction relation; here, we present a simplified version
that assumes that all types t are not volatile:

value-fits t v = tc-val’ t v (when t is an integer, float, or pointer type)
value-fits (tarray t′ n) v = (Zlength v = Z.max 0 n) ∧ Forall (value-fits t′) v
value-fits (Tstruct i noattr) (v1, (v2, (. . . ,vn))) =

value-fits (field-type f1 v1) ∧ . . . ∧ value-fits (field-type fn vn)
(when the fields of struct i are f1, . . . , fn)

The predicate tc-val’ says,

Definition tc-val’ (t: type) (v: val) := v ̸=Vundef → tc-val t v.

Definition tc-val (t: type) : val →Prop :=
match t with
| Tvoid ⇒ False
| Tint sz sg - ⇒ is-int sz sg
| Tlong - - ⇒ is-long
| Tfloat F32 - ⇒ is-single
| Tfloat F64 - ⇒ is-float
| Tpointer - - | Tarray - - - | Tfunction - - - ⇒ is-pointer-or-null
| Tstruct - - | Tunion - - ⇒ isptr

end

So, an atomic value (int, float, pointer) fits either when it is Vundef or
when it type-checks. We permit Vundef to “fit,” in order to accommodate
partially initialized data structures in C.
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Since τ is usually concrete, tc-val τ v immediately unfolds to something
like,

TC0: is-int I32 Signed (Vint i)
TC1: is-int I8 Unsigned (Vint c)
TC2: is-int I8 Signed (Vint d)
TC3: is-pointer-or-null p
TC4: isptr q

TC0 says that i is a 32-bit signed integer; this is a tautology, so it will be
automatically deleted by go-lower.

TC1 says that c is a 32-bit signed integer whose value is in the range
of unsigned 8-bit integers (unsigned char). TC2 says that d is a 32-bit
signed integer whose value is in the range of signed 8-bit integers (signed
char). These hypotheses simplify to,

TC1: 0 ≤ Int.unsigned c ≤Byte.max-unsigned
TC2: Byte.min-signed ≤ Int.signed c ≤Byte.max-signed
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40 cancel
The cancel tactic proves associative-commutative rearrangement goals
such as (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5)⊢ A4 ∗ (A5 ∗ A1)∗ (A3 ∗ A2).

If the goal has the form (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5) ⊢ (A4 ∗B1 ∗ A1)∗B2
where there is only a partial match, then cancel will remove the matching
conjuncts and leave a subgoal such as A2 ∗ A3 ∗ A5 ⊢ B1 ∗B2.

cancel solves (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5) ⊢ A4 ∗TT∗ A1 by absorbing
A2 ∗ A3 ∗ A5 into TT. If the goal has the form

F := ?224 : list(environ→mpred)
(A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5)⊢ A4 ∗ (fold_right sepcon emp F)∗ A1

where F is a frame that is an abbreviation for an uninstantiated logical
variable of type list(environ→mpred), then the cancel tactic will perform
frame inference: it will unfold the definition of F, instantiate the variable
(in this case, to A2 :: A3 :: A5 :: nil), and solve the goal. The frame may have
been created by evar(F: list(environ→mpred)), as part of forward symbolic
execution through a function call.

WARNING: cancel can turn a provable entailment into an unprovable
entailment. Consider this:

A∗C ⊢ B∗C
A∗D∗C ⊢ C∗B∗D

This goal is provable by first rearranging to (A ∗C)∗D ⊢ (B∗C)∗D.
But cancel may aggressively cancel C and D, leaving A ⊢ B, which is not
provable. You might wonder, what kind of crazy hypothesis is A∗C ⊢ B∗C;
but indeed such “context-dependent” cancellations do occur in the theory
of linked lists; see PLCC Chapter 19.

CANCEL DOES not USE βη equality, as that could be slow in some
cases. That means sometimes cancel leaves a residual subgoal A ⊢ A′

where A =β A′; sometimes the only differences are in (invisible) implicit
arguments. You can apply derives-refl to solve such residual goals.
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UNIFICATION VARIABLES. cancel does not instantiate unification vari-
ables, other than the Frame as described above. The ecancel tactic
does instantiate evars (much like the difference between assumption and
eassumption).
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41 entailer!
The entailer and entailer! tactics simplify (or solve entirely) entailments in
either the lifted or base-level separation logic. The entailer never turns a
provable entailment into an unprovable one; entailer! is more aggressive
and more efficient, but sometimes (rarely) turns a provable entailment
into an unprovable one. We recommend trying entailer! first.

When go-lower is applicable, the entailers start by applying it (see
Chapter 36).

Then: saturate-local (see Chapter 37).

NEXT: on each side of the entailment, gather the propositions to the left:
R1 ∗ (!!P1&&(!!P2&&R2)) becomes !!(P1 ∧P2)&&(R1 ∗R2).

Move all left-hand-side propositions above the line; substitute variables.
Autorewrite with entailer-rewrite, a modest hint database. If the r.h.s. or
its first conjunct is a “valid_pointer” goal (or one of its variants), try to
solve it.

At this point, entailer tries normalize and (if progress) back to NEXT;
entailer! applies cancel to the spatial terms and prove-it-now to each
propositional conjunct.

The result is that either the goal is entirely solved, or a residual entail-
ment or proposition is left for the user to prove.
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42 normalize
The normalize tactic performs autorewrite with norm and several other
transformations. Normalize can be slow: use Intros and entailer if
they can do the job.

The norm rewrite-hint database uses several sets of rules.

Generic separation-logic simplifications.

P ∗emp= P emp∗P = P P &&TT= P TT&&P = P

P &&FF= FF FF&&P = FF P ∗FF= FF FF∗P = FF

P &&P = P (EX _ : A, P)= P local ‘True=TT

Pull EX and !! out of *-conjunctions.

(EX x : A, P)∗Q =EX x : A, P∗Q (EX x : A, P)&&Q =EX x : A, P &&Q

P∗ (EX x : A, Q)=EX x : A, P∗Q P &&(EX x : A, Q)=EX x : A, P &&Q

P ∗ (!!Q &&R)=!!Q &&(P ∗R) (!!Q &&P)∗R =!!Q &&(P ∗R)

Delete auto-provable propositions.

P → (!!P &&Q =Q) P → (!!P =TT)

Integer arithmetic.

n+0= n 0+n = n n∗1= n 1∗n = n sizeof tuchar= 1

align n 1= n (z > 0)→ (align 0 z = 0) (z ≥ 0)→ (Z.max 0 z = z)
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Int32 arithmetic.
Int.sub x x = Int.zero Int.sub x Int.zero = x

Int.add x (Int.neg x) = Int.zero Int.add x Int.zero = x

Int.add Int.zero x = x

x ̸= y→ offset_val(offset_val v i) j = offset_val v (Int.add i j)

Int.add(Int.repr i)(Int.repr j)= Int.repr(i+ j)

Int.add(Int.add z (Int.repr i)) (Int.repr j) = Int.add z (Int.repr(i+ j))

z > 0→ (align 0 z = 0) force_int(Vint i)= i

(min_signed≤ z ≤max_signed)→ Int.signed(Int.repr z)= z

(0≤ z ≤max_unsigned)→ Int.unsigned(Int.repr z)= z

(Int.unsigned i < 2n)→ Int.zero_ext n i = i

(−2n−1 ≤ Int.signed i < 2n−1)→ Int.sign_ext n i = i

map, fst, snd, . . .

map f (x :: y)= f x ::map f y map nil= nil fst(x, y)= x

snd(x, y)= y (isptr v)→ force_ptr v = v isptr (force_ptr v)= isptr v

(is_pointer_or_null v)→ ptr_eq v v = True

Unlifting.

‘ f ρ = f [when f has arity 0] ‘ f a1 ρ = f (a1 ρ) [when f has arity 1]

‘ f a1 a2 ρ = f (a1 ρ) (a2 ρ) [when f has arity 2, etc.] (P ∗Q)ρ = Pρ∗Qρ

(P &&Q)ρ = Pρ&&Qρ (!!P)ρ =!!P !!(P ∧Q)=!!P &&!!Q

(EXx : A, P x)ρ = EXx : A, P xρ ‘(EX x : B, Px)=EX x : B, ‘(Px))

‘(P ∗Q)= ‘P ∗ ‘Q ‘(P &&Q)= ‘P && ‘Q
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Type checking and miscellaneous.

tc_andp tc_TT e = e tc_andp e tc_TT = e

eval_id x (env_set ρ x v)= v

x ̸= y→ (eval_id x (env_set ρ y v)= eval_id x v)

isptr v → (eval_cast_neutral v = v)

(∃t.tc_val t v ∧ is_pointer_type t) → (eval_cast_neutral v = v)

Expression evaluation. (autorewrite with eval, but in fact these
are usually handled just by simpl or unfold.)

deref_noload(tarray t n)= (fun v ⇒ v) eval_expr(Etempvar i t)= eval_id i

eval_expr(Econst_int i t)= ‘(Vint i)

eval_expr(Ebinop op a b t)=
‘(eval_binop op (typeof a) (typeof b)) (eval_expr a) (eval_expr b)

eval_expr(Eunop op a t)= ‘(eval_unop op (typeof a)) (eval_expr a)

eval_expr(Ecast e t)= ‘(eval_cast(typeof e) t) (eval_expr e)

eval_lvalue(Ederef e t)= ‘force_ptr (eval_expr e)

Function return values.

get_result(Some x)= get_result1(x) retval(get_result1 i ρ)= eval_id i ρ

retval(env_set ρ ret_temp v) = v

retval(make_args(ret_temp :: nil) (v :: nil) ρ) = v

ret_type(initialized i ∆)= ret_type(∆)
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Postconditions. (autorewrite with ret-assert.)

normal_ret_assert FF ek vl = FF

frame_ret_assert(normal_ret_assert P) Q = normal_ret_assert (P ∗Q)

frame_ret_assert P emp = P

frame_ret_assert P Q EK_return vl = P EK_return vl ∗ Q

frame_ret_assert(loop1_ret_assert P Q) R =
loop1_ret_assert (P ∗R)(frame_ret_assert Q R)

frame_ret_assert(loop2_ret_assert P Q) R =
loop2_ret_assert (P ∗R)(frame_ret_assert Q R)

overridePost P (normal_ret_assert Q)= normal_ret_assert P

normal_ret_assert P ek vl = (!!(ek=EK_normal)&&(!!(vl=None)&&P))

loop1_ret_assert P Q EK_normal None = P

overridePost P R EK_normal None= P

overridePost P R EK_return = R EK_return

IN ADDITION TO REWRITING, normalize applies the following lemmas:

P ⊢TT FF⊢ P P ⊢ P ∗TT (∀x. (P ⊢Q))→ (EX x : A, P ⊢Q)

(P → (TT⊢Q))→ (!!P ⊢Q) (P → (Q ⊢ R))→ (!!P &&Q ⊢ R)

and does some rewriting and substitution when P is an equality in the
goal, (P → (Q ⊢ R)).

Given the goal x → P, where x is not a Prop, normalize avoids doing an
intro. This allows the user to choose an appropriate name for x.
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43 assert_PROP
Consider the proof state of verif_sumarray.v, just after (* Prove postcondi-
tion of loop body implies loop invariant. *). We have,

H : 0 ≤ i ≤ size
semax Delta

(PROP () LOCAL(. . .)
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))
x= x[i]; . . .
POSTCONDITION

We desire, above the line, Zlength contents = size. This is not provable
from anything above the line. But it is provable from the precondition
(PROP/LOCAL/SEP).

Whenever a pure proposition (Prop) is provable from the precondition,
you can bring it above the line using assert-PROP.

For example, assert-PROP(Zlength contents = size) gives you an
entailment proof goal:

H : 0 ≤ i ≤ size
ENTAIL Delta,

(PROP () LOCAL(. . .)
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))

⊢ !! (Zlength contents = size).

Then, typically, you use entailer to prove the assertion. For example:

assert-PROP (Zlength contents = size). {
entailer!. do 2 rewrite Zlength-map. reflexivity.

}
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44 sep_apply
The sep-apply tactic is used to replace conjuncts in the precondition of an
entailment. Suppose you have this situation:

H : C*A |– J
A∗B∗C∗D ⊢E

You can do sep-apply H to obtain,

H : C*A |– J
J∗B∗D ⊢E

Or suppose you have, Lemma L: ∀x y, F(x)∗G(y)=H(x,y)
and your proof goal is, A∗G(1)∗C∗F(2) ⊢E
then you can do sep-apply L to obtain, H(2,1)∗A∗C ⊢E.

sep-apply also works on the precondition of semax or on the SEP part of an
ENTAIL goal.

Pure propositions: If your hypothesis or lemma has the form, P∗Q ⊢ !!S
then sep-apply behaves as if it were written P∗Q ⊢ !!S && (P∗Q). That is,
if the right-hand side is a pure proposition, then the left-hand-side is not
deleted.

Rewriting: If your hypothesis or lemma has the form, P∗Q = R then
sep-apply will apply P∗Q ⊢R.
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45 Welltypedness of variables
Verifiable C’s typechecker ensures this about C-program variables: if a
variable is initialized, then it contains a value of its declared type.

Function parameters (accessed by Etempvar expressions) are always
initialized. Nonaddressable local variables (accessed by Etempvar ex-
pressions) and address-taken local variables (accessed by Evar) may be
uninitialized or initialized. Global variables (accessed by Evar) are always
initialized.

The typechecker keeps track of the initialization status of local nonad-
dressable variables, conservatively: if on all paths from function entry
to the current point—assuming that the conditions on if-expressions
and while-expressions are uninterpreted/nondeterministic—there is an
assignment to variable x, then x is known to be initialized.

Addressable local variables do not have initialization status tracked by
the typechecker; instead, this is tracked in the separation logic, by data-at
assertions such as v _ (uninitialized) or v i (initialized).

Proofs using the forward tactic will typically generate proof obligations
(for the user to solve) of the form,

ENTAIL ∆,PROP(P⃗) LOCAL(Q⃗) SEP(R⃗) ⊢ PROP(P⃗ ′) LOCAL(Q⃗′) SEP(R⃗′)

∆ keeps track of which nonaddressable local variables are initialized; says
that all references to local variables contain values of the right type; and
says that all addressable locals and globals point to an appropriate block
of memory.

Using go-lower or entailer on an ENTAIL goal causes a tc-val assertion to
be placed above the line for each initialized tempvar. As explained at
page 62, this tc-val may be simplified into an is-int hypothesis, or even
removed if vacuous.
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46 Shares
Operators such as data-at take a permission share, expressing whether
the assertion grants read permission, write permission, or some other
fractional permission.

Tsh =Share.top

Lsh

a'a

c
d

b

Rsh=Ews

Share.bot

b'

The top share, written Tsh or Share.top, gives total permission: to
deallocate any cells within the footprint of this mapsto, to read, to write.

Share.split Tsh= (Lsh,Rsh)
Share.split Lsh= (a,a′) Share.split Rsh= (b,b′)
a′⊕b = c lub(c,Rsh)= a′⊕Rsh= d
∀sh. writable_share sh → readable_share sh
writable_share Ews readable_share b
writable_share d readable_share c
writable_share Tsh ¬readable_share Lsh

Any share may be split into a left half and a right half. The left and right
of the top share are given distinguished names Lsh, Rsh.

The right-half share of the top share (or any share containing it such as
d) is sufficient to grant write permission to the data: “the right share is
the write share.” A thread of execution holding only Lsh—or subshares
of it such as a,a′—can neither read or write the object, but such shares
are not completely useless: holding any nonempty share prevents other
threads from deallocating the object.

Any subshare of Rsh, in fact any share that overlaps Rsh, grants read



46. SHARES 75

permission to the object. Overlap can be tested using the glb (greatest
lower bound) operator.

Whenever (data-at sh t w v) holds, then the share sh must include at
least a read share, thus this gives permission to load memory at address
v to get a value w of type t.

To make sure sh has enough permission to write (i.e., Rsh⊂ sh, we can say
writable-share sh : Prop.

To test whether a share sh is empty or nonempty, use sepalg.identity sh or
sepalg.nonidentity sh.

Writable extern global variables come with the “extern writable share”
Ews; so does memoryobtained from malloc. Stack-allocated addressable
locals come with the “top share” Tsh. Read-only globals come with the
share Ers, the “extern readable share.”

Sequential programs usually have little need of any shares except the
Tsh and Ews. However, many function specifications can be parameter-
ized over any share (example: sumarray-spec on page 14); that kind of
generalized specification makes the functions usable in more contexts.

In C it is undefined to test deallocated pointers for equality or inequal-
ities, so the Hoare-logic rule for pointer comparison also requires some
permission-share; see page 76.
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47 Pointer comparisons
In C, if p and q are expressions of type pointer-to-something, testing
p=q or p!=q is defined only if: p is NULL, or points within a currently
allocated object, or points at the end of a currently allocated object; and
similarly for q. Testing p<q (etc.) has even stricter requirements: p and
q must be pointers into the same allocated object.

Verifiable C enforces this by creating “type-checking” conditions for the
evaluation of such pointer-comparison expressions. Before reasoning
about the result of evaluating expression p==q, you must first prove
tc-expr ∆ (Ebinop Oeq (Etempvar -p (tptr tint)) (Etempvar -q (tptr tint))),
where tc-expr is the type-checking condition for that expression. This
simplifies into an entailment with the current precondition on the left,
and denote-tc-comparable p q on the right.

The entailer(!) has a solver for such proof goals. It uses the hint database
valid-pointer. It relies on spatial terms on the l.h.s. of the entailment, such
as data-at π t v p which guarantees that p points to something.

The file progs/verif_ptr_compare.v illustrates pointer comparisons.
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48 Proof of the reverse program
Program Logics for Certified Compilers, Chapter 3 shows a program
that reverses a linked list (destructively, in place), along with a proof of
correctness. (Chapters 2 and 3 available free here.)

That proof is based on a general notion of list segments. Here we show
a simpler proof that does not use segments, but see Chapter 49 for proof
that corresponds to Chapters 3 and 27 of PLCC.

The C program is in progs/reverse.c:

struct list {unsigned head; struct list ∗tail;};

struct list ∗reverse (struct list ∗p) {
struct list ∗w, ∗t, ∗v;
w = NULL;
v = p;
while (v) { t = v→tail; v→tail = w; w = v; v = t; }
return w;

}

Please open your CoqIDE or Proof General to progs/verif_reverse2.v. As
usual, in progs/verif_reverse2.v we import the clightgen-produced file
reverse.v and then build CompSpecs and Vprog (see page 13, Chapter 28,
Chapter 50).

For the struct list used in this program, we can define the notion of linked
list x σ

⇝ nil with a recursive definition:

Fixpoint listrep (sigma: list val) (x: val) : mpred :=
match sigma with
| h::hs ⇒ EX y:val, data-at Tsh t-struct-list (h,y) x ∗ listrep hs y
| nil ⇒ !! (x = nullval) && emp
end.

http://vst.cs.princeton.edu/download/PLCC-to-chapter-3.pdf#page=20


48. PROOF OF THE reverse PROGRAM 78

That is, listrep σ x describes a null-terminated linked list starting at
pointer p, with permission-share Tsh, representing the sequence σ.

The API spec (see also Chapter 7) for reverse is,

Definition reverse-spec :=
DECLARE -reverse
WITH σ: list val, p: val
PRE [ -p OF (tptr t-struct-list) ]
PROP() LOCAL(temp -p p)SEP (listrep σ p)

POST [ (tptr t-struct-list) ]
EX q:val, PROP() LOCAL(temp -p q)SEP (listrep (rev σ) q).

The precondition says (for p the function parameter) p σ
⇝ nil, and the

postcondition says that (for q the return value) q rev σ
⇝ nil.

In your IDE, enter the Lemma body-reverse and move after the start-function
tactic. As expected, the precondition for the function-body is

PROP() LOCAL(temp -p p) SEP(listrep σ p).

After forward through two assignment statements (w=NULL; v=p;) the
LOCAL part also contains temp -v p; temp -w (Vint (Int.repr 0)).

The loop invariant for the while loop is quite similar to the one given in
PLCC Chapter 3 page 20:

∃σ1,σ2. σ= rev(σ1) ·σ2 ∧ v σ2⇝ 0∗w σ1⇝ 0

It’s quite typical for loop invariants to existentially quantify over the
values that are different iteration-to-iteration. We represent this in
PROP/LOCAL/SEP notation as,

EX σ1: list val, EX σ2 : list val, EX w: val, EX v: val,
PROP(σ = rev σ1 ++ σ2)
LOCAL(temp -w w; temp -v v)
SEP(listrep σ1 w; listrep σ2 v).
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We apply forward-while with this invariant, and (as usual) we have four
subgoals: (1) precondition implies loop invariant, (2) loop invariant
implies typechecking of loop-termination test, (3) loop body preserves
invariant, and (4) after the loop.

(1) To prove the precondition implies the loop invariant, we instantiate
σ1 with nil and σ2 with σ; we instantiate w with NULL and v with p. But
this leaves the goal,

ENTAIL ∆, PROP() LOCAL(temp -v p; temp -w nullval; temp -p p)
SEP(listrep σ p)

⊢PROP(σ = rev [] ++ σ) LOCAL(temp -w nullval; temp -v p)
SEP(listrep [] nullval; listrep σ p)

The PROP and LOCAL parts are trivially solvable by the entailer. We can
remove the SEP conjunct (listrep [] nullval) by unfolding that occurrence of
listrep, leaving !!(nullval=nullval)&&emp.

(2) The type-checking condition is not trivial, as it is a pointer comparison
(see Chapter 47), but the entailer! solves it anyway.

(3) The loop body starts by assuming the loop invariant and the truth of
the loop test. Their propositional parts have already been moved above
the line at the comment (* loop body preserves invariant *). That is,
HRE: isptr v says that the loop test is true, and H: σ = rev σ1 ++ σ2 is
from the invariant.

The first statement in the loop body, t=v→tail; loads from the list cell at
v. But our SEP assertion for v is, listrep σ2 v. The assertion listrep σ2 v
is not a data-at that we can load from. So we can unfold this occurrence
of listrep, but still there is no data-at unless we know that σ2 is h :: r for
some h, r.

We destruct σ2 leaving two cases: σ2 = nil and σ2 = h :: r. The first case
is a contradiction—by the definition of listrep, we must have v == nullptr,
but that’s incompatible with isptr(v) above the line.
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In the second case, we have (below the line) ∃y, . . . that binds the value
of the tail-pointer of the first cons cell. We move that above the line by
Intros y.

NOW THAT THE FIRST LIST-CELL IS UNFOLDED, it’s easy to go forward
through the four commands of the loop body. Now we are (* at end of loop
body, re-establish invariant *).

We choose values to instantiate the existentials: Exists (h::σ1,r,v,y). (Note
that forward-while has uncurried the four separate EX quantifiers into a
single 4-tuple EX.) Then entailer! leaves two subgoals:

----------------------------------------------(1/2)
rev σ1 ++ h :: r = (rev σ1 ++ [h]) ++ r
----------------------------------------------(2/2)

listrep σ1 w ∗ field-at Tsh t-struct-list [] (h,w) v ∗ listrep r y
⊢ listrep (h :: σ1) v ∗ listrep r y

Indeed, entailer! always leaves at most two subgoals: at most one propo-
sitional goal, and at most one cancellation (spatial) goal. Here, the
propositional goal is easily dispatched in the theory of (Coq) lists.

The second subgoal requires unrolling the r.h.s. list segment, by unfolding
the appropriate instance of listrep. Then we appropriately instantiate
some existentials, call on the entailer! again, and the goal is solved.

(4) After the loop, we must prove that the loop invariant and the negation
of the loop-test condition is a sufficient precondition for the next state-
ment(s). In this case, the next statement is a return; one can always
go forward through a return, but now we have to prove that our current
assertion implies the function postcondition. This is fairly straightfoward.



81

49 Alternate proof of reverse
Chapter 27 of PLCC describes a proof of the same list-reverse program,
based on a general theory of list segments. That proof is shown in
progs/verif_reverse.v.

The general theory is in progs/list_dt.v. It accommodates list segments
over any C struct type, no matter how many fields. Here, we import the
LsegSpecial module of that theory, covering the “ordinary” case appropriate
for the reverse.c program.

Require Import VST.progs.list-dt. Import LsegSpecial.

Then we instantiate that theory for our particular struct list by providing
the listspec operator with the names of the struct (-list) and the link field
(-tail).

Instance LS: listspec -list -tail.
Proof. eapply mk-listspec; reflexivity. Defined.

All other fields (in this case, just -head) are treated as “data” fields.

Now, lseg LS π σ p q is a list segment starting at pointer p, ending at q,
with permission-share π and contents σ.

In general, with multiple data fields, the type of σ is constructed via
reptype (see Chapter 29). In this example, with one data field, the type of
σ computes to list val.
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50 Global variables
In the C language, “extern” global variables live in the same namespace
as local variables, but they are shadowed by any same-name local defi-
nition. In the C light operational semantics, global variables live in the
same namespace as addressable local variables (both referenced by the
expression-abstract-syntax constructor Evar), but in a different name-
space from nonaddressable locals (expression-abstract-syntax constructor
Etempvar).1

In the program-AST produced by clightgen, globals (and their initializers)
are listed as Gvars in the prog-defs. These are accessed (automatically)
in two ways by the Verifiable C program logic. First, their names and
types are gathered into Vprog as shown on page 13 (try the Coq command
Print Vprog to see this list). Second, their initializers are translated into
data-at conjuncts of separation logic as part of the main-pre definition (see
page 37).

When proving semax-body for the main function, the start-function tactic
takes these definitions from main-pre and puts them in the precondition
of the function body. In some cases this is done using the more-primitive
mapsto operator2, in other cases it uses the higher-level (and more
standard) data-at3.

1This difference in namespace treatment cannot matter in a program translated by
CompCert clightgen from C, because no as-translated expression will exercise the differ-
ence.

2For example, examine the proof state in progs/verif_reverse.v immediately after
start_function in Lemma body_main; and see the conversion to data_at done by the
setup_globals lemma in that file.

3For example, examine the proof state in progs/verif_sumarray.v immediately after
start_function in Lemma body_main.
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51 For loops (special case)
MANY FOR-LOOPS HAVE THE FORM, for (init; i < hi; i++) body
such that the expression hi will evaluate to the same value every time
around the loop. This upper-bound expression need not be a literal
constant, it just needs to be invariant.

For these loops you can use the tactic,

forward-for-simple-bound n (EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗)%assert.
forward-for-simple-bound n (EX i:Z, EX x:A, PROP. . .LOCAL. . .SEP. . .)%assert.

where n is the upper bound: a Coq value of type Z such that hi will
evaluate to n. This tactic generates simpler subgoals than the general
forward-for tactic.

The loop invariant is (EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗)), where i is
the value (in each iteration) of the loop iteration variable -i. You must
have an existential quantifier for the value of the loop-iteration variable.
You may have a second ∃ for a value of your choice that depends on i.

You must omit from Q any mention of the loop iteration variable -i. The
tactic will insert the binding temp -i i. You need not write i ≤ hi in P, the
tactic will insert it.

AN EXAMPLE of a for-loop proof is in progs/verif_sumarray2.v. This is an
alternate implementation of progs/sumarray.c (see Chapter 13) that uses a
for loop instead of a while loop:

unsigned sumarray(unsigned a[], int n) { /∗ sumarray2.c ∗/
int i; unsigned s=0;
for (i=0; i<n; i++) { s += a[i]; }
return s;

}

Also see progs/verif_min.v for several approaches to the specification/veri-
fication of another for-loop.
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52 For loops (general iterators)
The C-language for loop has the general form, for (init; test; incr) body. If your
for-loop has an iteration variable that is tested by the test and adjusted by the
incr, then you can probably use forward-for, described in this chapter. If not, use
forward-loop (see the next chapter).

Let Inv be the loop invariant, established by the initializer and preserved by the
body-plus-increment. Let PreInc be the assertion just before the increment. Both
Inv and PreInc have type A → environ→mpred, where A is the Coq type of the
abstract values carried by your iteraction variable; typically this is just Z.

Post is the join-postcondition of the loop; you don’t need to provide it if either
(1) there are no break statements in the loop, or (2) the postcondition is already
provided in your proof context (typically because a close-brace follows the entire
loop). Depending on whether you need Post, verify the loop with,

forward-for Inv. if your loop has no break or continue statements; or
forward-for Inv continue: PreInc. if no break statements; or
forward-for Inv continue: PreInc break: Post.

This is demonstrated in body-sumarray-alt from progs/verif_sumarray2.v.

unsigned sumarray(unsigned a[], int n) {
int i; unsigned s;
s=0;
for (i=0;

/∗ Inv : loop invariant ∗/
i<n; i++) {

s += a[i];
/∗ PreInc : pre-increment invariant ∗/

}
/∗ Post : loop postcondition ∗/
return s;

}
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53 Loops (fully general)
The C-language for loop has the general form, for (init; test; incr) body.

The C-language while loop with break and continue is equivalent to a for
loop with empty init and incr.

The C-language infinite-loop, written for(;;)c or while(1)c is also a form
of the for-loop.

The most general tactic for proving any of these loops is,
forward-loop Inv continue: PreInc break: Post.

The assertion Inv : environ→mpred is the loop invariant.
PreInc : environ→mpred is the invariant just before the incr.
The assertion Post : environ→mpred is the postcondition of the loop.

If your incr is empty (or Sskip), or if the body has no continue statements,
you can omit continue: PreInc.

If your postcondition is already fully determined (POSTCOND contains
no unification variables), then you can omit break: Post.

If you’re not sure whether to omit the break: or continue: assertions, just
try forward-loop Inv without them, and Floyd will advise you.
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54 Manipulating preconditions
In some cases you cannot go forward until the precondition has a certain
form. For example, to go forward through t=v→tail; there must be a
data-at or field-at in the SEP clause of the precondition that gives a value
for -tail field of t. As page 80 describes, a listrep can be unfolded to expose
such a SEP conjunct.

Faced with the proof goal, semax ∆ (PROP(P⃗)LOCAL(Q⃗)SEP(R⃗)) c Post
where PROP(P⃗)LOCAL(Q⃗)SEP(R⃗) does not match the requirements for
forward symbolic execution, you have several choices:

• Use the rule of consequence explicitly:
apply semax-pre with PROP(P⃗ ′)LOCAL(Q⃗′)SEP(R⃗′),
then prove ENTAIL ∆, P⃗;Q⃗; R⃗ ⊢ P⃗ ′;Q⃗′; R⃗′.

• Use the rule of consequence implicitly, by using tactics (page 87)
that modify the precondition.

• Do rewriting in the precondition, either directly by the standard
rewrite and change tactics, or by normalize (page 67).

• Extract propositions and existentials from the precondition, by
using Intros (page 42) or normalize.

• Flatten stars into semicolons, in the SEP clause, by Intros.
• Use the freezer (page 89) to temporarily “frame away” spatial

conjuncts.
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TACTICS FOR MANIPULATING PRECONDITIONS. In many of these tactics
we select specific conjucts from the SEP items, that is, the semicolon-
separated list of separating conjuncts. These tactic refer to the list by
zero-based position number, 0,1,2,. . . .

For example, suppose the goal is a semax or entailment containing
PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j). Then:

focus_SEP i j k. Bring items #i, j,k to the front of the SEP list.

focus-SEP 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
focus-SEP 0. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j).
focus-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b;d;a;c;e;f;g;h;i;j)
focus-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d;b;a;c;e;f;g;h;i;j)

gather_SEP i j k. Bring items #i, j,k to the front of the SEP list and
conjoin them into a single element.

gather-SEP 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
gather-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b∗d;a;c;e;f;g;h;i;j)
gather-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d∗b;a;c;e;f;g;h;i;j)

replace_SEP i R. Replace the ith element the SEP list with the assertion
R, and leave a subgoal to prove.

replace-SEP 3 R. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;R;e;f;g;h;i;j).

with subgoal PROP(P⃗)LOCAL(Q⃗)SEP(d)⊢ R.

replace_in_pre S S′. Replace S with S′ anywhere it occurs in the precon-
dition then leave (P⃗;Q⃗; R⃗)⊢ (P⃗;Q⃗; R⃗)[S′/S] as a subgoal.

frame_SEP i j k. Apply the frame rule, keeping only elements i, j,k of the
SEP list. See Chapter 55.
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55 The Frame rule
Separation Logic supports the Frame rule,

Frame
{P} c {Q}

{P ∗F} c {Q∗F}

In VST, we recommend you use the freeze tactic instead; see Chapter 56.
But if you really want to use the frame rule, here is how.

Suppose you have the proof goal,

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) (c1; c2); c3 Post

and suppose you want to “frame out” R1 for the duration of c1; c2, and
have it back again for c3.

First, you grab the first 2 statements using the tactic,
first-N-statements 2%nat. (This works the same regardless of the nesting
structure of the semicolons; it reassociates as needed.)

This leaves the two subgoals,

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) c1; c2 (normal_ret_assert?88)
semax ∆ ?88 c3 Post

In the first subgoal, do frame-SEP 0 2 to retain only R0;R2.

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R2) c1; c2 . . .

Now you’ll see that (in the precondition of the second subgoal) the
unification variable ?88 has been instantiated in such a way that R1 is
added back in. Now you can prove the two subgoals, in order.
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56 The Freezer (freeze,thaw)
Suppose you have the proof goal,

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) c1; c2; c3 Post

and suppose you want to “frame out” R0 and R2 for the duration of c1; c2,
and have them back again for c3. Instead of using the frame rule, you can
use the freezer.

First, say freeze FR1 := R0 R2.
The name FR1 is up to you; R0 and R2 must be patterns (perhaps with
underscores, for example (data-at - - - p)) that match conjuncts from the
SEP clause.

Now the proof goal looks like this:

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(frzl FR1; R1) c1; c2; c3 Post

with a definition FR1 := . . . above the line.

You can also write freeze F := − pattern1 pattern2 . . .patternn
to freeze into F every conjunct except those that match the patterns.

Proceed forward through c1 and c2; then you can give the command
thaw FR1 that unfolds (and clears) the FR1 definition.

Freezers can coexist and be arbitrarily nested, and be thawed indepen-
dently; freezer-conjuncts participate in cancel and other separation-logic
operations.
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57 32-bit Integers
The VST program logic uses CompCert’s 32-bit integer type.

Inductive comparison := Ceq | Cne | Clt | Cle | Cgt | Cge.
Int.wordsize: nat = 32.
Int.modulus : Z = 232.
Int.max-unsigned : Z = 232 −1.
Int.max-signed : Z = 231 −1.
Int.min-signed : Z = −231.

Int.int : Type.
Int.unsigned : int →Z.
Int.signed : int →Z.
Int.repr : Z → int.

Int.zero := Int.repr 0.

(* Operators of type int→int→bool *)
Int.eq Int.lt Int.ltu Int.cmp(c:comparison) Int.cmpu(c:comparison)

(* Operators of type int→int *)
Int.neg Int.not

(* Operators of type int→int→int *)
Int.add Int.sub Int.mul Int.divs Int.mods Int.divu Int.modu
Int.and Int.or Int.xor Int.shl Int.shru Int.shr Int.rol Int.ror Int.rolm

Lemma eq-dec: ∀(x y: int), {x = y} + {x <> y}.
Theorem unsigned-range: ∀ i, 0 ≤unsigned i < modulus.
Theorem unsigned-range-2: ∀ i, 0 ≤unsigned i ≤max-unsigned.
Theorem signed-range: ∀ i, min-signed ≤signed i ≤max-signed.
Theorem repr-unsigned: ∀ i, repr (unsigned i) = i.
Lemma repr-signed: ∀ i, repr (signed i) = i.
Theorem unsigned-repr:

∀z, 0 ≤z ≤max-unsigned →unsigned (repr z) = z.
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Theorem signed-repr:
∀z, min-signed ≤z ≤max-signed →signed (repr z) = z.

Theorem signed-eq-unsigned:
∀x, unsigned x ≤max-signed →signed x = unsigned x.

Theorem unsigned-zero: unsigned zero = 0.
Theorem unsigned-one: unsigned one = 1.
Theorem signed-zero: signed zero = 0.

Theorem eq-sym: ∀x y, eq x y = eq y x.
Theorem eq-spec: ∀(x y: int), if eq x y then x = y else x <> y.
Theorem eq-true: ∀x, eq x x = true.
Theorem eq-false: ∀x y, x <> y →eq x y = false.

Theorem add-unsigned: ∀x y, add x y = repr (unsigned x + unsigned y).
Theorem add-signed: ∀x y, add x y = repr (signed x + signed y).
Theorem add-commut: ∀x y, add x y = add y x.
Theorem add-zero: ∀x, add x zero = x.
Theorem add-zero-l: ∀x, add zero x = x.
Theorem add-assoc: ∀x y z, add (add x y) z = add x (add y z).

Theorem neg-repr: ∀z, neg (repr z) = repr (-z).
Theorem neg-zero: neg zero = zero.
Theorem neg-involutive: ∀x, neg (neg x) = x.
Theorem neg-add-distr: ∀x y, neg(add x y) = add (neg x) (neg y).

Theorem sub-zero-l: ∀x, sub x zero = x.
Theorem sub-zero-r: ∀x, sub zero x = neg x.
Theorem sub-add-opp: ∀x y, sub x y = add x (neg y).
Theorem sub-idem: ∀x, sub x x = zero.
Theorem sub-add-l: ∀x y z, sub (add x y) z = add (sub x z) y.
Theorem sub-add-r: ∀x y z, sub x (add y z) = add (sub x z) (neg y).
Theorem sub-shifted: ∀x y z, sub (add x z) (add y z) = sub x y.
Theorem sub-signed: ∀x y, sub x y = repr (signed x -signed y).
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Theorem mul-commut: ∀x y, mul x y = mul y x.
Theorem mul-zero: ∀x, mul x zero = zero.
Theorem mul-one: ∀x, mul x one = x.
Theorem mul-assoc: ∀x y z, mul (mul x y) z = mul x (mul y z).
Theorem mul-add-distr-l: ∀x y z, mul (add x y) z = add (mul x z) (mul y z).
Theorem mul-signed: ∀x y, mul x y = repr (signed x ∗ signed y).

and many more axioms for the bitwise operators, shift operators,
signed/unsigned division and mod operators.



93

58 CompCert C abstract syntax
The CompCert verified C compiler translates standard C source programs
into an abstract syntax for CompCert C, and then translates that into
abstract syntax for C light. Then VST Separation Logic is applied to
the C light abstract syntax. C light programs proved correct using the
VST separation logic can then be compiled (by CompCert) to assembly
language.

C light syntax is defined by these Coq files from CompCert:

Integers. 32-bit (and 8-bit, 16-bit, 64-bit) signed/unsigned integers.
Floats. IEEE floating point numbers.
Values. The val type: integer + float + pointer + undefined.
AST. Generic support for abstract syntax.
Ctypes. C-language types and structure-field-offset computations.
Clight. C-light expressions, statements, and functions.

You will see C light abstract syntax constructors in the Hoare triples
(semax) that you are verifying. We summarize the constructors here.

Inductive expr : Type :=
(∗ 1 ∗) | Econst-int: int →type →expr
(∗ 1.0 ∗) | Econst-float: float →type →expr (∗ double precision ∗)
(∗ 1.0f0 ∗) | Econst-single: float →type →expr (∗ single precision ∗)
(∗ 1L ∗) | Econst-long: int64 →type →expr
(∗ x ∗) | Evar: ident →type →expr
(∗ x ∗) | Etempvar: ident →type →expr
(∗ ∗e ∗) | Ederef: expr →type →expr
(∗ &e ∗) | Eaddrof: expr →type →expr
(∗ ∼e ∗) | Eunop: unary-operation →expr →type →expr
(∗ e+e ∗) | Ebinop: binary-operation →expr →expr →type →expr
(∗ (int)e ∗) | Ecast: expr →type →expr
(∗ e.f ∗) | Efield: expr → ident →type →expr.
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Inductive unary-operation := Onotbool | Onotint | Oneg | Oabsfloat.
Inductive binary-operation := Oadd | Osub | Omul | Odiv | Omod
| Oand | Oor | Oxor | Oshl | Oeq | One | Olt | Ogt | Ole | Oge.

Inductive statement : Type :=
(∗ /∗∗/;∗) | Sskip : statement
(∗ E1=E2; ∗) | Sassign : expr →expr →statement (∗ memory store ∗)
(∗ x=E; ∗) | Sset : ident →expr →statement (∗ tempvar assign ∗)
(∗ x= f (...); ∗) | Scall: option ident →expr → list expr →statement
(∗ x=b(...); ∗) | Sbuiltin: option ident →external-function →typelist →

list expr →statement
(∗ s1; s2 ∗) | Ssequence : statement →statement →statement
(∗ if() else {} ∗) | Sifthenelse : expr →statement →statement →statement
(∗ for (;;s2) s1 ∗) | Sloop: statement →statement →statement
(∗ break; ∗) | Sbreak : statement
(∗ continue; ∗) | Scontinue : statement
(∗ return E; ∗) | Sreturn : option expr →statement

| Sswitch : expr → labeled-statements →statement
| Slabel : label →statement →statement
| Sgoto : label →statement.
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59 C light semantics
The operational semantics of C light statements and expressions is
given in compcert/cfrontend/Clight.v. We do not expose these semantics
directly to the user of Verifiable C. Instead, the statement semantics is
reformulated as semax, an axiomatic (Hoare-logic style) semantics. The
expression semantics is reformulated in veric/expr.v and veric/Cop2.v as a
computational1 big-step evaluation semantics. In each case, a soundness
proof relates the Verifiable C semantics to the CompCert Clight semantics.

Rules for semax are given in veric/SeparationLogic.v—but you rarely use
these rules directly. Instead, derived lemmas regarding semax are proved
in floyd/*.v and Floyd’s forward tactic applies them (semi)automatically.

The following functions (from veric/expr.v) define expression evaluation:

eval-id {CS: compspecs} (id: ident) : environ →val.
(∗ evaluate a tempvar ∗)

eval-var {CS: compspecs} (id: ident) (ty: type) : environ →val.
(∗ evaluate an lvar or gvar, addressable local or global variable ∗)

eval-cast (t t’: type) (v: val) : val.
(∗ cast value v from type t to type t’, but beware! There are

three types involved, including native type of v. ∗)
eval-unop (op: unary-operation) (t1 : type) (v1 : val) : val.
eval-binop{CS:compspecs} (op:binary-operation) (t1 t2: type) (v1 v2: val): val.
eval-lvalue {CS: compspecs} (e: expr) : environ →val.

(∗ evalue an l-expression, one that denotes a loadable/storable place∗)
eval-expr {CS: compspecs} (e: expr) : environ →val.

(∗ evalue an r-expression, one that is not storable ∗)

The environ argument is for looking up the values of local and global
variables. However, in most cases where Verifiable C users see eval-lvalue
or eval-expr—in subgoals generated by the forward tactic—all the variables

1that is, defined by Fixpoint instead of by Inductive.
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have already been substituted by values. Thus the environment is not
needed.

The expression-evaluation functions call upon several helper functions
from veric/Cop2.v:

sem-cast: type →type →val →option val.
sem-cast-∗ (∗ several helper functions for sem-cast ∗)
bool-val: type →val →option bool.
bool-val-∗: (∗ helper functions ∗)
sem-notbool: type →val →option val.
sem-neg: type →val →option val.
sem-sub {CS: compspecs}: type →type →val →val →option val.
sem-sub-∗: (∗ helper functions ∗)
sem-add {CS: compspecs}: type →type →val →val →option val.
sem-add-∗: (∗ helper functions ∗)
sem-mul: type →type →val →val →option val.
sem-div: type →type →val →val →option val.
sem-mod: type →type →val →val →option val.
sem-and: type →type →val →val →option val.
sem-or: type →type →val →val →option val.
sem-xor: type →type →val →val →option val.
sem-shl: type →type →val →val →option val.
sem-shr: type →type →val →val →option val.
sem-cmp: comparison →type →type →(...) →val →val →option val.
sem-unary-operation: unary-operation →type →val →option val.
sem-binary-operation {CS: compspecs}:

binary-operation →type →type →mem →val →val →option val.

The details are not so important to remember. The main point is that Coq
expressions of the form sem-. . . should simplify away, provided that their
arguments are instantiated with concrete operators, concrete constructors
Vint/Vptr/Vfloat, and concrete C types. The int values (etc.) carried inside
Vint/Vptr/Vfloat do not need to be concrete: they can be Coq variables.
This is the essence of proof by symbolic execution.
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60 Splitting arrays
Consider this example, from the main function of progs/verif_sumarray2.v:

data-at sh (tarray tuint k) al p : mpred

The data-at predicate here says that in memory starting at address p
there is an array of k slots containing, respectively, the elements of the
sequence al.

Suppose we have a function sumarray(unsigned a[], int n) that takes an
array of length n, and we apply it to a “slice” of p: sumarray(p+i,k-i); where
0≤ i ≤ k. The precondition of the sumarray funspec has data-at sh (tarray tint n) bl a.
In this case, we would like a =&(p[i]), n = k− j, and bl= the sublist of al
from i to k−1.

To prove this function-call by forward-call, we must split up
(data-at sh (tarray tint k) al p) into two conjuncts:
(data-at sh (tarray tint i) (sublist 0 i al) p ∗

data-at sh (tarray tuint (k− i)) (sublist i k al) q),
where q is the pointer to the array slice beginning at address p+ i. We
write this as, q = field-address0 (tarray tint k) [ArraySubsc i] p. That is,
given a pointer p to a data structure described by (tarray tint k), calculate
the address for subscripting the ith element. (See Chapter 38)

As shown in the body-main proof in progs/verif_sumarray2.v, the lemma
split-array proves the equivalence of these two predicates, using the VST-
Floyd lemma split2-data-at-Tarray. Then the data-at . . . q predicate can
satisfy the precondition of sumarray, while the p slice will be part of the
“frame” for the function call.

See also: split3-data-at-Tarray.
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61 sublist
Since VST 2.6, we recommend using the new list-solve and list-simplify
tactics, described in Chapter 62 and Chapter 63. Using autorewrite with
sublist is less efficient, and in certain corner cases, can turn provable
goals into unprovable goals.

Chapter 60 explained that we often need to reason about slices of
arrays whose contents are sublists of lists. For that we have a function
sublist i j l which makes a new list out of the elements i . . . j−1 of list l.

To simplify expressions involving, sublist, ++, map, Zlength, Znth, and
list-repeat, use autorewrite with sublist.

Often, you find equations “above the line” of the form,

H: n = Zlength (map Vint (map Int.repr contents))

You may find it useful to do autorewrite with sublist in ∗⊢ to change this
to n=Zlength contents before proceeding with (autorewrite with sublist)
below the line.

These rules comprise the sublist rewrite database:

sublist-nil’: i = j →sublist i j l = [].
app-nil-l: [ ] ++ l = l.
app-nil-r: l ++ [] = l.
Zlength-rev: Zlength (rev l) = Zlength l.
sublist-rejoin’: 0≤ i ≤ j = j′ ≤ k ≤Zlength l →

sublist i j l ++ sublist j′ k l = sublist i k l.
subsub1: a− (a−b)= b.
Znth-list-repeat-inrange: 0≤ i ≤ n →Znth i (list-repeat (Z.to-nat n) a) = a.
Zlength-cons: Zlength (a::l) = Z.succ (Zlength l).
Zlength-nil: Zlength [ ] = 0.
Zlength-app: Zlength (l ++ l′) = Zlength l ++ Zlength l′.
Zlength-map: Zlength (map f l) = Zlength l.
list-repeat-0: list-repeat (Z.to-nat 0) = [].
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Zlength-list-repeat: 0≤ n →Zlength (list-repeat (Z.to-nat n)) = n.
Zlength-sublist: 0≤ i ≤ j ≤Zlength l →Zlength(sublist i j l) = j− i.
sublist-sublist: 0≤ m →0≤ k ≤ i ≤ j−m →

sublist k i (sublist m j l) = sublist (k+m) (i+m) l.
sublist-app1: 0≤ i ≤ j ≤Zlength l →sublist i j (l ++ l′) = sublist i j l.
sublist-app2: 0≤Zlength l ≤ i →

sublist i j (l ++ l′) = sublist (i−Zlength l) ( j−Zlength l) l′.
sublist-list-repeat: 0≤ i ≤ j ≤ k →

sublist i j (list-repeat (Z.to-nat k) v) = list-repeat (Z.to-nat ( j− i)) v.
sublist-same: i = 0 → j =Zlength l →sublist i j l = l.
app-Znth1: i <Zlength l →Znth i (l ++ l′) = Znth i l.
app-Znth2: i ≥Zlength l →Znth i (l ++ l′) = Znth i−Zlength l l′.
Znth-sublist: 0≤ i →0≤ j < k− i →Znth j (sublist i k l) = Znth ( j + i) l.

along with miscellaneous Z arithmetic:

n−0= n 0+n = n n+0= n n ≤ m →max(n,m)= m
n+m−n = m n+m−m = n m−n+n = m n−n = 0

n+m− (n+ p)= m− p etcetera.
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62 list_solve
One often needs to prove goals about lists. list-solve is a convenient solver
for many practical proof goals involving lists.

list-solve supports operators: Zlength, Znth, nil ([]), cons (::), Zrepeat, app
(++), upd-Znth, sublist, and map.

list-solve supports four kinds of typical proof goals:

• linear arithmetic involving lengths of lists,

e.g. Zlength (l ++ l′) ≥Zlength l;

• goal involving nth elements of lists (not limited to equality),

e.g. Znth i (l ++ l′) = Znth i l;

• equality of lists,

e.g. l1 ++ l2 = l3 ++ l4;

• entailment of array contents,

e.g. data-at sh (tarray τ n) (l1 ++ l2) p ⊢
data-at sh (tarray τ n) (l3 ++ l4) p.

The way that list-solve supports assumptions in the following forms, is to
interpret them as quantified properties:

• l = l′ is replaced by Zlength l = Zlength l′ ∧ ∀ i, 0≤ i <Zlength l →
Znth i l = Znth i l′.

• In x l is replaced by ∃ i, 0≤ i <Zlength l ∧ x = Znth i l.
• ∼In x l is replaced by ∀ i, 0≤ i <Zlength l →x ̸= Znth i l.
• sorted (≤) l is replaced by ∀ i j, 0≤ i ≤ j <Zlength l →

Znth i l ≤Znth j l.
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The theory of lists with concatenation and nth-element is known to be
undecidable.1 So list-solve has such restriction that when encountering
quantified properties like ∀ i, P (Znth i l) (Znth (i+k) l), it asks user to
prove k = 0 if it cannot prove it automatically. If k = 0 is not provable,
list-solve does not support this goal. User might need to perform an
induction before using list-solve.

list-simplify is an alternate tactic for list-solve, like ring-simplify to ring. It
performs transformations in the same way as list-solve, and solves the
goal if list-solve can solve, but leaves the unsolved goals to the user, so you
may solve these goals by hand or figure out why the goal is not solved.
list-simplify will not change a provable goal into unprovable goals.

1The reason is that an element may have relationship with other elements in the
same list, directly or indirectly, and that leads to complicated deduction.. For example,
sublist 1 (Zlength l) l = sublist 0 (Zlength l -1) l indicates Znth i l = Znth (i+1) l for
every i and so all the elements in l are equal. Such kind of reasoning relies on induction
and is hard to automate. Also see Aaron R. Bradley, Zohar Manna, and Henny B. Sipma,
What’s Decidable About Arrays?, Lecture Notes in Computer Science, vol 3855. Springer,
Berlin, Heidelberg, 2006.
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63 list_solve (advanced)
You can enhance list-solve by adding new rules.

Adding a macro A macro is an operator that can be expressed by other
operators. For example,

Definition rotate {X} (l : list X) k :=
sublist k (Zlength l) l ++ sublist 0 k l.

Add rotate to hint database, so list-solve will unfold it automatically.

Hint Unfold rotate : list-solve-unfold.

If a macro is expressed by other operators not by conversion but by
Leibniz equality, e.g.

Lemma firstn-sublist: firstn (Z.to-nat i) l = sublist 0 i l,

add the lemma to rewrite database by

Hint Rewrite @firstn-sublist : list-solve-rewrite.

Adding a new kind of quantified property list-solve can be cus-
tomized to handle predicates on lists that can be expressed by quantified
properties. For example,

Lemma Forall-Znth : ∀{A} {d : Inhabitant A} l P,
Forall P l ↔∀ i, 0 ≤ i < Zlength l →P (Znth i l).

Hint Rewrite Forall-Znth : list-prop-rewrite.

Adding a new operator list-solve handles operators, e.g. app and map,
by using rules that reduce terms with head symbols Zlength and Znth to
simpler terms, e.g.

Zlength-app: Zlength (l ++ l′) = Zlength l + Zlength l′,
Znth-map: Znth i (map f l) = f (Znth i l).

list-solve can support new operators if reduction rules are provided. For
example, to add the operator rev : list ?A → list ?A that reverses a list, the
following reduction rules should be provided:
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Zlength-rev: Zlength (rev l) = Zlength l;
Znth-rev: 0 ≤ i < Zlength l →Znth i (rev l) = Znth (Zlength l -i -1) l.

The following commands add these reduction rules to hint databases.
Sometimes, “@” is necessary to prevent the rules from being specialized
for a certain type before being added to the hint databases. The using
keyword in commands tells the rewrite database to prove the side
condition about index, 0 ≤ i ≤Zlength l, by internal tactic Zlength-solve in
list-solve.

Hint Rewrite Zlength-rev : Zlength.
Hint Rewrite @Znth-rev using Zlength-solve : Znth.

If the reduction rule for Zlength also has side conditions about indices, for
example,

Zlength-map2: Zlength l1 = Zlength l2 →Zlength (map2 f l1 l2) = Zlength l1,

the tactic to prove side condition should be provided to the rewrite
database as

Hint Rewrite Zlength-map2 using (try Zlength-solve; fail 4) : Zlength.

The adjusted failure level 4 is important for internal mechanism in
list-solve.

There is another way to add rule for Zlength by hacking into list-solve’s
internal tactics. It utilizes caching mechanism in list-solve, so it is
more efficient when the length of a list appears for multiple times. See
commented code in progs/verif-dotprod.v and progs/verif-revarray.v for
detail.
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64 rep_lia: lia with representation
facts [was rep_omega]
To solve goals such as

H: Zlength al < 50
-------------------
0 ≤Zlength al ≤ Int.max-signed

-------------------
0 ≤ Int.unsigned (Int.repr i) ≤
Int.max-unsigned.

you want to use the lia tactic augmented by many facts about the repre-
sentations of integers: the numeric values of Int.min-signed, Int.max-signed,
etc.; the fact that Zlength is nonnegative; the fact that 0 ≤ Int.unsigned z ≤
Int.max-unsigned, and so on.

The rep-lia tactic does this. In addition, it “knows” all the facts in the
Hint Rewrite : rep-lia database; see the next chapter.
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65 Opaque constants
Suppose your C program has an array of a million elements:

int a[1000000];

Then you will have SEP conjuncts such as

data-at sh (tarray tint 1000000) (default-val (tarray tint 1000000)) p

That default-val (tarray tint 1000000) “simplifies” to:
Vundef::Vundef::. . .999997 . . . Vundef::Vundef::nil, which will blow up Coq.

You might try to avoid blow-ups by writing,

Definition N = 1000000.
Opaque N.
data-at sh (tarray tint N) (default-val (tarray tint N)) p

and indeed, that’s better (because simpl and simple apply won’t unfold N),
but it’s not good enough (because reflexivity and auto will unfold N). See
Coq issue #5301.

A better solution is:

Definition N : Z := proj1-sig (opaque-constant 1000000).
Definition N-eq : N=1000000 := proj2-sig (opaque-constant -).
Hint Rewrite N-eq : rep-lia.

This makes N opaque to all tactics, except that the rep-lia tactic (and any
that use the rep-lia hint database) can expand N.

The progs/tutorial1.v, shows an example of this, in Lemmas exercise4
through exercise4c.
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66 computable
One of the simplest, cheapest (in terms of Coq proof-term size) ways
of solving a goal is with Coq’s compute tactic. But sometimes compute
blows up, if it’s performed on a goal with opaque constants, or where
call-by-value evaluation happens to be very expensive.

Floyd’s computable tactic first examines the goal to make sure it won’t
blow up, and then solves it using compute (followed by other simple
tactics), as long as the goal contains only the following operators:

(∗ nat constants ∗) O S (∗ positive constants ∗) xH xI xO
(∗ Z constants ∗) Zpos Zneg Z0
(∗ Z operators ∗) + - ∗ / mod max opp < ≤> ≥= <>
Ceq Cne Clt Cle Cgt Cge ∧
two-power-nat
{Int,Int64,Ptrofs}.{eq,lt,ltuadd,sub,mul,neg,cmp,cmpu,repr,signed,unsigned}
{Int,Int64,Ptrofs}.{max-unsigned,max-signed,min-signed,modulus,zwordsize}
(∗ any 0-arity (constant) definitions will be unfolded ∗)

You may add other operators to the computable hint database. For
example, sizeof has already been added:

Lemma computable-sizeof: ∀cs x, computable x →computable (@sizeof cs x).
Proof. intros. apply computable-any. Qed.
Hint Resolve computable-sizeof : computable.

Adding this lemma to the Hint database tells the computable tactic to
consider sizeof x “safe” to compute, as long as its argument x is computable.
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67 Loop peeling and other
manipulations
Sometimes a loop is easier to verify by first transforming it into another
loop. For example, for (init; test; incr) body if not proved using the
specialized for-loop tactic forward-for-simple-bound, must be proved by
forward-for that requires two loop invariants: one just before the test and
another just before the incr. (See Chapter 51 and Chapter 52.)

However, as long as the body does not contain any (outer-level) continue
statements, then this loop is equivalent to init; while (test) body that
can be proved using forward-while with just one continue statement.
This equivalence is stated as the Lemma semax-loop-nocontinue (and its
variant semax-loop-nocontinue1); the forward-for and forward-loop tactics
apply this lemma automatically when appropriate, to relieve the user of
the obligation of proving the just-before-the-incr invariant.

LOOP PEELING. In some loops, it makes sense to prove the first iteration
differently than the rest; or the loop invariant is established during the
first iteration instead of before it. For example, progs/verif_peel.v shows
the verification of this loop:

int f (int b) {int i, a; for (i=b+1; i∗i>b; i--) a=i; return a; }

The natural invariant, 0 ≤ i < b < (i+1)∗ (i+1) ∧ a = i+1, does not hold
until the first iteration is completed.

Lemma semax-while-peel peels the first iteration from a while loop, as
demonstrated in progs/verif_peel.v; Lemma semax-loop-unroll1 peels the
first iteration of a general Sloop.



108

68 Later
Many of the Hoare rules (e.g., see PLCC, page 161) have the operater ▷
(pronounced “later”) in their precondition:

semax_set_forward
∆⊢ {▷P} x := e {∃v. x = (e[v/x])∧P[v/x]}

The modal assertion ▷P is a slightly weaker version of the assertion P.
It is used for reasoning by induction over how many steps left we intend
to run the program. The most important thing to know about ▷later is
that P is stronger than ▷P, that is, P ⊢ ▷P; and that operators such as
∗, && ,ALL (and so on) commute with later: ▷(P ∗Q)= (▷P)∗ (▷Q).

This means that if we are trying to apply a rule such as semax-set-forward;
and if we have a precondition such as

local (tc-expr ∆ e) && ▷ local (tc-temp-id id t ∆ e) && (P1 ∗ ▷P2)

then we can use the rule of consequence to weaken this precondition to

▷ (local (tc-expr ∆ e) && local (tc-temp-id id t ∆ e) && (P1 ∗ P2))

and then apply semax-set-forward. We do the same for many other kinds
of command rules.

This weakening of the precondition is done automatically by the forward
tactic, as long as there is only one ▷later in a row at any point among the
various conjuncts of the precondition.

A more sophisticated understanding of ▷ is needed to build proof rules for
recursive data types and for some kinds of object-oriented programming;
see PLCC Chapter 19.
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69 Mapsto and func_ptr
Aside from the standard operators and axioms of separation logic, the
core separation logic has just two primitive spatial predicates:

Parameter address-mapsto:
memory-chunk →val →share →share →address →mpred.

Parameter func-ptr : funspec →val →mpred.

func-ptr φ v means that value v is a pointer to a function with
specification φ; see Chapter 75.

address-mapsto expresses what is typically written x y in separation
logic, that is, a singleton heap containing just value y at address x.

From this, we construct two low-level derived forms:

mapsto (sh:share) (t:type) (v w: val) : mpred describes a singleton
heap with just one value w of (C-language) type t at address v, with
permission-share sh.

mapsto- (sh:share) (t:type) (v:val) : mpred describes an uninitialized
singleton heap with space to hold a value of type t at address v, with
permission-share sh.

From these primitives, field-at and data-at are constructed.
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70 gvars: Private global variables
If your C module (typically, a .c file, but it could be part of a .c file or
several .c files) accesses private global variables, you may want to avoid
mentioning their names in the public interface.

Definition MyModuleGlobs (gv: globals) : mpred :=
(∗ for example ∗) data-at Tsh t-struct-foo some-value (gv -MyVar).

DECLARE -myfunction
WITH . . ., gv: globals
PRE [ t1, t2 ]

PROP(. . .) PARAMS(v1;v2) GLOBALS(gv) SEP(. . .; MyModuleGlobs gv)
POST [ . . . ]

PROP() RETURN(. . .) SEP(. . .; MyModuleGlobs gv).

The client of myfunction sees that there is a private conjunct
MyModuleGlobs gv that (presumably) uses some global variables of
MyModule, but it does not see their names.

THE FILE progs/verif_libglob.v demonstrates the verification of a module
that uses private global variables.

Inside the semax-body proof of -myfunction, the PARAMS/GLOBALS is
transformed as follows:

PROP(. . .)
LOCAL(temp -x1 v1; temp -x2 v2; gvars gv)
SEP(. . .; MyModuleGlobs gv)

That is, the temp components of the LOCAL give access to specific local
variables, and the gvars component gives access to all the global variables.
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71 with_library: Library functions
A CompCert C program is implicitly linked with dozens of “built-in”
and library functions. In the .v file produced by clightgen, the prog-defs
component of your prog lists these as External definitions, along with the
Internal definitions of your own functions. Every one of these needs exactly
one funspec, of the form DECLARE...WITH..., and this funspec must be
proved with a semax-ext proof.

Fortunately, if your program does not use a given library function f ,
then the funspec DECLARE -f WITH...PRE[...] False POST... with a False
precondition is easy to prove! The tactic with-library prog [s1; s2; . . . ; sn]
augments your explicit funspec-list [s1; s2; . . . ; sn] with such trivial fun-
specs for the other functions in the program prog.

Definition Gprog := ltac:(with-library prog [sumarray-spec; main-spec]).

YOU MAY WISH to use standard library functions such as malloc, free, exit.
These are axiomatized (with external funspecs) in floyd.library. To use
them, Require Import VST.floyd.library after you import floyd.proofauto.
This imports a (floyd.library.)with-library tactic hiding the standard
(floyd.forward.)with-library tactic; the new one includes axiomatized
specifications for malloc, free, exit, etc. We haven’t proved the implemen-
tations against the axioms, so if you don’t trust them, then don’t import
floyd.library.

The next chapters explain the specifications of certain standard-library
functions.
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72 malloc/free
The C library’s malloc and free functions have these specifications:

DECLARE -malloc
WITH cs: compspecs, t:type
PRE [ tuint ]

PROP(0 ≤sizeof t ≤ Int.max-unsigned;
complete-legal-cosu-type t = true;
natural-aligned natural-alignment t = true)

PARAMS(Vint (Int.repr (sizeof t)))
SEP()

POST [ tptr tvoid ] EX p:-,
PROP()
RETURN(p)
SEP(if eq-dec p nullval then emp

else (malloc-token Ews t p ∗ data-at- Ews t p)).

DECLARE -free
WITH cs: compspecs, t: type, p:val
PRE [ tptr tvoid ]

PROP()
PARAMS(p)
SEP(malloc-token Ews t p; data-at- Ews t p)

POST [ Tvoid ]
PROP() RETURN() SEP().

You must Import VST.floyd.library. Then the with-library tactic (Chap-
ter 71) makes these funspecs available in your Gprog.

The purpose of the malloc-token is to describe the special record-descriptor
that tells free how big the allocated record was. See progs/verif_queue.v
for a demonstration of malloc/free.
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73 exit
Import VST.floyd.library. before you define
Gprog := ltac:(with-library prog [. . .]).
and you will get:

DECLARE -exit
WITH errcode: Z
PRE [ tint ]

PROP() PARAMS(errcode) SEP()
POST [ tvoid ]

PROP(False) RETURN() SEP().
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74 Old-style funspecs
Until VST version 2.5, function preconditions were written a different
way. Instead of writing PROP/PARAMS/GLOBALS/SEP they were written
as PROP/LOCAL/SEP. Here’s an example; compare with the new-style
funspec on page 14.

Definition sumarray-spec : ident ∗ funspec :=
DECLARE -sumarray
WITH a: val, sh : share, contents : list Z, size: Z
PRE [ -a OF (tptr tuint), -n OF tint ]

PROP(readable-share sh;
0 ≤ size ≤ Int.max-signed;
Forall (fun x ⇒ 0 ≤ x ≤ Int.max-unsigned) contents)

LOCAL(temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)

POST [ tuint ]
PROP()
LOCAL(temp ret-temp (Vint (Int.repr (sum-Z contents))))
SEP(data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a).

Notice also that the PRE list is different: each parameter is written
-x OF t, where -x is the C-language identifier used in the program.

In the old funspec notation, the return-value part of the postcondition is
written LOCAL(temp ret-temp v) instead of RETURN(v).

VST proofs that use old-style funspecs should access the old-style notation
and old-style definitions by,

Require Import VST.floyd.Funspec-old-Notation.

This brings in a different notation scope, in which WITH/PRE/POST
works differently.

Whenever you do start-function (in the semax-body of an old-style funspec)
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or forward-call (calling a function with an old-style funspec), the Floyd
tactics automatically convert to a new-style funspec. For that conversion
to work, the tactics must be able to prove (from what’s above the line,
and from the PROP and SEP clauses) that each of the temp values is not
Vundef.
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75 Function pointers
Parameter func-ptr : funspec →val →mpred.
Definition func-ptr’ f v := func-ptr f v && emp.

func-ptr φ v means that v is a pointer to a function with funspec φ.
func-ptr’ φ v is a form more suitable to be a conjunct of a SEP clause.

Verifiable C’s program logic is powerful enough to reason expressively
about function pointers (see PLCC Chapters 24 and 29). Object-oriented
programming with function pointers is illustrated, in two different
styles, by the programs progs/message.c and progs/object.c, and their
verifications, progs/verif_message.c and progs/verif_object.c.

In this chapter, we illustrate using the much simpler program, progs/funcptr.c.

int myfunc (int i) { return i+1; }
void ∗a[] = {myfunc};
int main (void) {

int (∗f)(int);
int j;
f = &myfunc;
j = f(3);
return j;

}

The verification, in progs/verif_funcptr.v, defines

Definition myfunc-spec := DECLARE -myfunc myspec.

where myspec is a Definition for a WITH...PRE...POST specification.

Near the beginning of Lemma body-main, notice that we have
GLOBALS(gv) in the precondition. That gv is needed by the tactic
make-func-ptr -myfunc, which adds func-ptr’ myspec (gv -myfunc) to the
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SEP clause. It “knows” to use myspec because it looks up -myfunc in Delta
(which, in turn, is derived from Gprog).

Now, forward through the assigment f=myfunc works as you might expect,
adding the LOCAL clause temp -f p.

To call a function-variable, such as this program’s j=f(3); just use
forward-call as usual. However, in such a case, forward-call will find its
funspec in a func-ptr’ SEP-clause, rather than as a global entry in Delta
as for ordinary function calls.
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76 Axioms of separation logic
These axioms of separation logic are often useful, although generally it is
the automation tactics (entailer,cancel) that apply them.

pred-ext: P⊢Q → Q⊢P → P=Q.
derives-refl: P ⊢P.
derives-trans: P ⊢Q → Q ⊢R → P⊢R.
andp-right: X⊢P → X⊢Q → X⊢(P&&Q).
andp-left1: P⊢R → P&&Q ⊢R.
andp-left2: Q⊢R → P&&Q ⊢R.
orp-left: P⊢R → Q⊢R → P||Q ⊢R.
orp-right1: P⊢Q → P⊢ Q||R.
orp-right2: P⊢R → P⊢ Q||R.
exp-right: ∀{B: Type}(x:B)(P:mpred)(Q: B →mpred),

P⊢Q x → P⊢ EX x:B, Q.
exp-left: ∀{B: Type}(P:B →mpred)(Q:mpred),

(∀ x, P x ⊢Q) → EX x:B,P ⊢Q.
allp-left: ∀{B}(P: B →mpred) x Q, P x⊢Q → ALL x:B,P⊢Q.
allp-right: ∀{B}(P: mpred)(Q:B →mpred),

(∀ v, P⊢ Q v) → P⊢ ALL x:B,Q.
prop-left: ∀(P: Prop) Q, (P →(TT⊢Q)) → !!P ⊢Q.
prop-right: ∀(P: Prop) Q, P → (Q⊢ !!P).
not-prop-right: ∀(P:mpred)(Q:Prop), (Q →(P⊢FF)) → P⊢ !!(∼Q).

sepcon-assoc: (P∗Q)∗R = P∗(Q∗R).
sepcon-comm: P Q, P∗Q = Q∗P.
sepcon-andp-prop: P∗(!!Q && R) = !!Q && (P∗R).
derives-extract-prop: (P →Q ⊢R) → !!P && Q ⊢R.
sepcon-derives: P⊢P’ → Q⊢Q’ → P∗Q ⊢P’∗Q’.
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77 Obscure higher-order axioms
The wand −∗ operator is “magic wand,” ewand −◦ is “existential magic
wand,” and ▷ is pronounced “later” and written |> in Coq.

see PLCC, Chapter 19.

imp-andp-adjoint: P&&Q⊢R ↔ P⊢(Q−→R).
wand-sepcon-adjoint: P∗Q⊢R ↔P ⊢Q−∗R.
ewand-sepcon: (P∗Q)−◦ R = P −◦ (Q −◦ R).
ewand-TT-sepcon: ∀(P Q R: A),

(P∗Q)&&(R−◦TT) ⊢(P &&(R−◦TT))∗(Q && (R−◦TT)).
exclude-elsewhere: P∗Q ⊢(P &&(Q−◦ TT))∗Q.
ewand-conflict: P∗Q⊢FF → P&&(Q−◦ R) ⊢FF

now-later: P ⊢▷P.
later-K: ▷ (P−→Q) ⊢(▷P −→▷Q).
later-allp: ∀T (F: T→mpred), ▷ (ALL x:T, F x) = ALL x:T, ▷ (F x).
later-exp: ∀T (F: T→mpred), EX x:T, ▷ (F x) ⊢▷ (EX x: F x).
later-exp’: ∀T (any:T) F, ▷ (EX x: F x) = EX x:T, ▷ (F x).
later-imp: ▷ (P−→Q) = (▷P −→▷Q).
loeb: ▷P ⊢P →TT ⊢P.
later-sepcon: ▷ (P ∗ Q) = ▷P ∗ ▷Q.
later-wand: ▷ (P −∗ Q) = ▷P −∗ ▷Q.
later-ewand: ▷ (P −◦ Q) = (▷P) −◦ (▷Q).
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78 Proving larg(ish) programs
When your program is not all in one .c file, see also Chapter 79. Whether
or not your program is all in one .c file, you can prove the individual
function bodies in separate .v files. This uses less memory, and (on a
multicore computer with parallel make) saves time. To do this, put your
API spec (up to the construction of Gprog in one file; then each semax-body
proof in a separate file that imports the API spec.

EXTRACTION OF SUBORDINATE SEMAX-GOALS. To ease memory pressure
and recompilation time, it is often advisable to partition the proof of a
function into several lemmas. Any proof state whose goal is a semax-
term can be extracted as a stand-alone statement by invoking tactic
semax_subcommand V G F. The three arguments are as in the statement
of surrounding semax-body lemma, i.e. are of type varspecs, funspecs, and
function.

The subordinate tactic mkConciseDelta V G F ∆ can also be invoked
individually, to concisely display the type context ∆ as the application of
a sequence of initializations to the host function’s func_tycontext.



121

79 Separate compilation, semax_ext
This chapter is obsolete, as is the progs/evenodd example. There’s
a newer, better way of doing modular verification of modular
programs: Verified Software Units (VSU).

What to do when your program is spread over multiple .c files. See
progs/even.c and progs/odd.c for an example.

CompCert’s clightgen tool translates your .c file into a .v file in which each
C-language identifier is assigned a positive number in the AST (Abstract
Syntax Tree) representation. When you have several .c files, you need
consistent numbering of the identifiers in the .v files. One way to achieve
this is to run clightgen on all the .c files at once:

clightgen even.c odd.c

This generates even.v and odd.v with consistent names. (It’s not exactly
separate compilation, but it will have to suffice for now.)

Now, you can do modular verification of modular programs. This is
illustrated in,

progs/verif_evenodd_spec.v Specifications of the functions.
progs/verif_even.v Verification of even.c.
progs/verif_odd.v Verification of odd.c.

Linking of the final proofs is described by Stewart.1.

1Gordon Stewart, Verified Separate Compilation for C, PhD Thesis, Department of
Computer Science, Princeton University, April 2015

http://www.cs.princeton.edu/research/techreps/TR-980-15
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80 Concurrency
Verifiable C can now be used to verify concurrent programs. For more
information and examples of how to use this feature, see the concurrency
manual in VST/doc/concurrency.pdf.
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81 Catalog of tactics/lemmas
Below is an alphabetic catalog of the major floyd tactics. In addition to
short descriptions, the entries indicate whether a tactic (or tactic notation)
is typically user-applied [u], primarily of internal use [i] or is expected to
be used at development-time but unlikely to appear in a finished proof
script [d]. We also mention major interdependencies between tactics, and
their points of definition.

assert_PROP P (tactic; Chapter 43) Put the proposition P above the
line, if it is provable from the current precondition.

cancel (tactic; page 64) Deletes identical spatial conjuncts from both
sides of a base-level entailment.

data_at_conflict p (tactic) equivalent to field_at_conflict p nil.
deadvars! (tactic) Removes from the LOCAL block of the current pre-

condition, any variables that are irrelevant to the rest of program
execution. Fails if there is no such variable.

derives_refl (lemma) A ⊢ A. Useful after cancel to handle βη-equality;
see page 64.

derives_refl’ (lemma) A = B → A ⊢ B.
drop_LOCAL n (tactic, where n : nat). Removes the nth entry of a the

LOCAL block of a semax or ENTAIL precondition.
drop_LOCALs [_i; _j] Removes variables _i and _j from the LOCAL

block of a semax or ENTAIL precondition.
entailer (tactic; page 66, page 30) Proves (lifted or base-level) entail-

ments, possibly leaving a residue for the user to prove.
entailer! (tactic; page 66, page 30) Like entailer, but faster and more

powerful—however, it sometimes turns a provable goal into an
unprovable goal.

Exists v (tactic; Chapter 23) Instantiate an EX existential on the right-
hand side of an entailment.

field_at_conflict p fld (tactic) Solves an entailment of the form
. . . ∗ field-at sh t fld v1 p ∗ . . . ∗ field-at sh t fld v2 p ∗ . . . ⊢-
based on the contradiction that the same field-assertion cannot
∗-separate. Usually invoked automatically by entailer (or entailer!)
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to prove goals such as !!(p<>q). Needs to be able to prove (or
compute) the fact that 0 < sizeof (nested-field-type t fld);
for data-at-conflict that’s equivalent to 0 < sizeof t.

forward (tactic; page 22) Do forward Hoare-logic proof through one C
statement (assignment, break, continue, return).

forward_call ARGS (tactic; page 39) Forward Hoare-logic proof through
one C function-call, where ARGS is a witness for the WITH clause
of the funspec.

forward_for (tactic; page 85) Hoare-logic proof for the for statement,
general case.

forward_for_simple_bound n Inv (tactic; page 83) When a for-loop has
the form for (init; i < hi; i++), where n is the value of hi, and Inv is
the loop invariant.

forward_if Q (tactic; page 26) Hoare-logic proof for the if statement,
where Q may be omitted if at the end of a block, where the
postcondition is already given.

forward_while Inv (tactic; Chapter 13) Forward Hoare-logic proof of a
while loop, with loop invariant Inv.

list_solve (tactic; Chapter 62) Solve goals that arise from lists with
Zlength, concatentation, sublist, and Znth.

make_compspecs prog (tactic; page 13)
mk_varspecs prog (tactic; page 13
mkConciseDelta V G F ∆ (tactic; page 120) Applicable to a proof state

with a semax goal. Simplies the ∆ component to the application of
a sequence of initializations to the host function’s func_tycontext.
Used to prepare the current proof goal for abstracting/factoring out
as a separate lemma.

name i _i (tactic) Before start-function, suggest the name i for the Coq
variable associated with the value of C global variable _i.

semax_subcommand V G F (tactic) Applicable to a proof state with
a semax goal. Extracts the current proof state as a stand-alone
statement that can be copy-and pasted to a separate file. The three
arguments should be copied from the statement of surrounding
semax-body lemma: V : varspecs,G : funspecs,F : function.

start_function (tactic; Chapter 9) Unpack the funspec’s pre- and post-
condition into a Hoare triple describing the function body.



81. CATALOG OF TACTICS/LEMMAS 125

sublist_split (lemma; page 35) Break a sublist into the concatentation of
two smaller sublists.

unfold_data_at (tactic; page 53) When t is a struct (or array) type, break
apart data-at sh t v p into a separating conjunction of its individual
fields (or array elements).

unfold_field_at (tactic; page 53) Like unfold-data-at, but starts with
field-at sh t path v p.

with_library (tactic; Chapter 71) Complete the funspecs by insert-
ing stub specifications for all unspecified functions; and (if
Import VST.floyd.library is done) adding standard specifications
for malloc, free, exit.
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