Verifiable C

Applying the Verified Software Toolchain to C programs

Version 2.1
April 18, 2018

Andrew W. Appel
with Lennart Beringer, Qinxiang Cao, Josiah Dodds
Contents

Verifiable C

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>5</td>
</tr>
<tr>
<td>Installation</td>
<td>7</td>
</tr>
<tr>
<td>Workflow, loadpaths</td>
<td>8</td>
</tr>
<tr>
<td>Verifiable C and clightgen</td>
<td>9</td>
</tr>
<tr>
<td>ASTs: abstract syntax trees</td>
<td>10</td>
</tr>
<tr>
<td>Use the IDE</td>
<td>12</td>
</tr>
<tr>
<td>Functional model, API spec</td>
<td>13</td>
</tr>
<tr>
<td>Proof of the sumarray program</td>
<td>17</td>
</tr>
<tr>
<td>start_function</td>
<td>18</td>
</tr>
<tr>
<td>forward</td>
<td>21</td>
</tr>
<tr>
<td>Hint</td>
<td>24</td>
</tr>
<tr>
<td>If, While, For</td>
<td>25</td>
</tr>
<tr>
<td>While loops</td>
<td>26</td>
</tr>
<tr>
<td>PROP() LOCAL() SEP()</td>
<td>28</td>
</tr>
<tr>
<td>Entailments</td>
<td>29</td>
</tr>
<tr>
<td>Array subscripts</td>
<td>31</td>
</tr>
<tr>
<td>At the end of the loop body</td>
<td>33</td>
</tr>
<tr>
<td>Returning from a function</td>
<td>35</td>
</tr>
<tr>
<td>Global variables and main()</td>
<td>36</td>
</tr>
<tr>
<td>Function calls</td>
<td>38</td>
</tr>
<tr>
<td>Tying all the functions together</td>
<td>39</td>
</tr>
<tr>
<td>Separation logic: EX, *, emp, !!</td>
<td>40</td>
</tr>
<tr>
<td>EX, Intros, Exists</td>
<td>41</td>
</tr>
<tr>
<td>Integers: nat, Z, int</td>
<td>43</td>
</tr>
<tr>
<td>Int, Int8, Int16, Int64, Ptrofs</td>
<td>45</td>
</tr>
<tr>
<td>Values: Vint, Vptr</td>
<td>46</td>
</tr>
<tr>
<td>C types</td>
<td>47</td>
</tr>
<tr>
<td>CompSpecs</td>
<td>48</td>
</tr>
<tr>
<td>reptype</td>
<td>49</td>
</tr>
</tbody>
</table>

Copyright © 2018 Andrew W. Appel
30 Uninitialized data, default_val
31 data_at
32 field_at
33 retype’, repinj
34 LOCAL defs: temp, lvar, gvar
35 go_lower
36 saturate_local
37 fieldcompatible, field_address
38 value_fits
39 cancel
40 entailer!
41 normalize
42 assert_PROP
43 Welltypedness of variables
44 Shares
45 Pointer comparisons
46 Proof of the reverse program
47 Alternate proof of reverse
48 Global variables
49 For loops (special case)
50 For loops (general iterators)
51 Loops (fully general)
52 Manipulating preconditions
53 The Frame rule
54 32-bit Integers
55 CompCert C abstract syntax
56 C light semantics
57 Splitting arrays
58 sublist
59 rep_omega: omega with representation facts
60 Later
61 Mapsto and func_ptr
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>gvars: Private global variables</td>
<td>98</td>
</tr>
<tr>
<td>63</td>
<td>with_library: Library functions</td>
<td>99</td>
</tr>
<tr>
<td>64</td>
<td>malloc/free</td>
<td>100</td>
</tr>
<tr>
<td>65</td>
<td>exit</td>
<td>102</td>
</tr>
<tr>
<td>66</td>
<td>Function pointers</td>
<td>103</td>
</tr>
<tr>
<td>67</td>
<td>Axioms of separation logic</td>
<td>105</td>
</tr>
<tr>
<td>68</td>
<td>Obscure higher-order axioms</td>
<td>106</td>
</tr>
<tr>
<td>69</td>
<td>Proving larg(ish) programs</td>
<td>107</td>
</tr>
<tr>
<td>70</td>
<td>Separate compilation, semax_ext</td>
<td>109</td>
</tr>
<tr>
<td>71</td>
<td>Catalog of tactics/lemmas</td>
<td>110</td>
</tr>
</tbody>
</table>
1 Overview

Verifiable C is a language and program logic for reasoning about the functional correctness of C programs. The language is a subset of CompCert C light; it is a dialect of C in which side-effects and loads have been factored out of expressions. The program logic is a higher-order separation logic, a kind of Hoare logic with better support for reasoning about pointer data structures, function pointers, and data abstraction.

Verifiable C is foundationally sound. That is, it is proved (with a machine-checked proof in the Coq proof assistant) that,

Whatever observable property about a C program you prove using the Verifiable C program logic, that property will actually hold on the assembly-language program that comes out of the C compiler.

This soundness proof comes in two parts: The program logic is proved sound with respect to the semantics of CompCert C, by a team of researchers primarily at Princeton University; and the C compiler is proved correct with respect to those same semantics, by a team of researchers primarily at INRIA. This chain of proofs from top to bottom, connected in Coq at specification interfaces, is part of the Verified Software Toolchain.
To use Verifiable C, one must have had some experience using Coq, and some familiarity with the basic principles of Hoare logic. These can be obtained by studying Pierce’s *Software Foundations* interactive textbook, and doing the exercises all the way to chapter “Hoare2.”

It is also useful to read the brief introductions to Hoare Logic and Separation Logic, covered in Appel’s *Program Logics for Certified Compilers*, Chapters 2 and 3 (those chapters available free, follow the link).

Program Logics for Certified Compilers (Cambridge University Press, 2014) describes Verifiable C version 1.1. If you are interested in the semantic model, soundness proof, or memory model of VST, the book is well worth reading. But it is not a reference manual.

More recent VST versions differ in several ways from what the PLCC book describes. • In the LOCAL component of an assertion, one writes temp \(i \ v \) instead of `\(\texttt{eq v} \) (eval_id \(i \)). • In the SEP component of an assertion, backticks are not used (predicates are not lifted). • In general, the backtick notation is rarely needed. • The type-checker now has a more refined view of char and short types. • field_mapsto is now called field_at, and it is dependently typed. • typed_mapsto is renamed data_at, and last two arguments are swapped. • umapsto (“untyped mapsto”) no longer exists. • mapsto sh \(t \ v \ w \) now permits either \(w = \texttt{Vundef} \) or the value \(\w \) belongs to type \(t \). This permits describing uninitialized locations, i.e., mapsto_sh \(t \ v = \texttt{mapsto_ sh t v Vundef} \). For function calls, one uses forward_call instead of forward. • C functions may fall through the end of the function body, and this is (per the C semantics) equivalent to a return statement.
2 Installation

The Verified Software Toolchain runs on Linux, Mac, or Windows. You will need to install:

Coq 8.7.1, from coq.inria.fr. Follow the standard installation instructions.

CompCert 3.2, from http://compcert.inria.fr/download.html. Build the `clightgen` tool, using these commands: `./configure -clightgen x86_32-linux; make`. You might replace `x86_32-linux` with `x86_32-macosx` or `x86_32-cygwin`. Verifiable C should work on other 32-bit architectures as well, but has not been extensively tested. Verifiable C has not been tested on 64-bit architectures, but a near-future release will support these.

VST 2.0, from vst.cs.princeton.edu, or else an appropriate version from https://github.com/PrincetonUniversity/VST. After unpacking, read the `BUILD_ORGANIZATION` file (or simply `make -j`).

Note on the Windows (cygwin) installation of CompCert: To build CompCert you’ll need an up to date version of the [menhir parser generator](http://www.lr.de/~mcallen/menhir/). To work around a cygwin incompatibility in the menhir build, touch `src/.versioncheck` before doing `make`.
3 Workflow, loadpaths

Within VST, the progs directory contains some sample C programs with their verifications. The workflow is:

- Write a C program F.c.
- Run clightgen -normalize F.c to translate it into a Coq file F.v.
- Write a verification of F.v in a file such as verif.F.v. That latter file must import both F.v and the VST *Floyd* program verification system, VST.floyd.proofauto.

LOAD PATHS. Interactive development environments (CoqIDE or Proof General) will need their load paths properly initialized through command-line arguments. Running make in vst creates a file .loadpath with the right arguments for *proof development of the VST itself or of its progs/examples*. For example,

```
coqide `cat .loadpath` progs/verif_reverse.v &
```

IN NORMAL USE (if you are not simply browsing the progs examples) your own files (F.c, F.v, verif.F.v) will not be inside the VST directory. You will need to run coqc or coqide (or Proof General) with “coq flags” to access the VST components. For this, use the file .loadpath-export or _CoqProject-export, created by make in VST.

Example:

```
cd my-own-directory
coqide `cat my/path/to/VST/.loadpath-export` myfile.v
```

FOR MORE INFORMATION, See the heading **USING PROOF GENERAL AND COQIDE** in the file **BUILD.Organization**.

1Named after Robert W. Floyd (1936–2001), a pioneer in program verification.
4 Verifiable C and clightgen

Verifiable C is a program logic (higher-order impredicative concurrent separation logic) for C programs with these restrictions:

- No casting between integers and pointers.
- No goto statements.
- Only structured switch statements (no Duff’s device).

CompCert’s clightgen tool translates C into abstract syntax trees (ASTs) of CompCert’s Clight intermediate language. You find clightgen in the root directory of your CompCert installation, after doing make clightgen.

Suppose you have a C source program broken into three files x.c y.c z.c.

clightgen -normalize x.c y.c z.c

This produces the files x.v y.v z.v containing Coq representations of ASTs.

Clightgen invokes the standard macro-preprocessor (to handle define and include), parses, type-checks, and produces ASTs. We translate all three files in one call to Clightgen, so that the global names in the C program (“extern” identifiers) will have consistent symbol-table indexes (ident values) across all three files.

Although your C programs may have side effects inside subexpressions, and memory dereferences inside subexpressions or if-tests, the program logic does not permit this. Therefore, clightgen transforms your programs before you apply the program logic:

- Factors out function calls and assignments from inside subexpressions (by moving them into their own assignment statements).
- Factors && and || operators into if statements (to capture short circuiting behavior).
- When the -normalize flag is used, factors each memory dereference into a top level expression, i.e. $x=a[b[i]]$; becomes $t=b[i]$; $x=a[t]$;
5 **ASTs: abstract syntax trees**

We will introduce Verifiable C by explaining the proof of a simple C program: adding up the elements of an array.

```c
unsigned sumarray(unsigned a[], int n) {
    int i; unsigned s;
    i=0;
    s=0;
    while (i<n) {
        s+=a[i];
        i++;
    }
    return s;
}
```

```c
unsigned four[4] = {1,2,3,4};
```

```c
int main(void) {
    unsigned s;
    s = sumarray(four,4);
    return (int)s;
}
```

You can examine this program in VST/progs/sumarray.c. Then look at progs/sumarray.v to find the output of CompCert’s clightgen utility: it is the abstract syntax tree (AST) of the C program, expressed in Coq. In sumarray.v there are definitions such as,

Definition `main` : ident := 54%positive.

Definition `s` : ident := 50%positive.

```
... 
```

Definition `f_sumarray` := {
 fn_return := tint; ...
 fn_params := ((-a, (tptr tint)) :: (-n, tint) :: nil);
 fn_temps := ((-i, tint) :: (-s, tint) :: (-x, tint) :: nil);
 fn_body :=
 (Ssequence
 (Sset _i (Econst_int (Int.repr 0) tint))
 (Ssequence (Sset _s (Econst_int (Int.repr 0) tint)) (Ssequence ...))) |}.

Definition `prog` : Clight.program := { | ... f_sumarray ... |}.
5. ASTs: Abstract Syntax Trees

In general it’s never necessary to read the AST file such as sumarray.v. But it’s useful to know what kind of thing is in there. C-language identifiers such as main and s are represented in ASTs as positive numbers (for efficiency); the definitions _main and _s are abbreviations for these. The AST for sumarray is in the function-definition f_sumarray.

In the source program sumarray.c, the function sumarray’s return type is int. In the abstract syntax (sumarray.v), the fn_return component of the function definition is tint, or equivalently (by Definition) Tint I32 Signed noattr. The Tint constructor is part of the abstract syntax of C type-expressions, defined by CompCert as,

\textbf{Inductive} type : Type :=

| Tvoid: type
| Tint: intsize → signedness → attr → type
| Tpointer: type → attr → type
| Tstruct: ident → attr → type
|

See also Chapter 27 (C types).
6 Use the IDE

Chapter 7 through Chapter 21 are meant to be read while you have the file progs/verif_sumarray.v open in a window of your interactive development environment for Coq. You can use Proof General, CoqIDE, or any other IDE that supports Coq.

Reading these chapters will be much less informative if you cannot see the proof state as each chapter discusses it.

Before starting the IDE, review Chapter 3 (Workflow) to see how to set up load paths.
7 Functional model, API spec

A program without a specification cannot be incorrect, it can only be surprising. (Paraphrase of J. J. Horning, 1982)

The file progs/verif_sumarray.v contains the specification of sumarray.c and the proof of correctness of the C program with respect to that specification. For larger programs, one would typically break this down into three or more files:

1. Functional model (often in the form of a Coq function)
2. API specification
3. Function-body correctness proofs, one per file.

We start verif_sumarray.v with some standard boilerplate:

Require Import VST.floyd.proofauto.
Require Import VST.progs.sumarray.
Instance CompSpecs : comps specs. make_comspecs prog. Defined.
Definition Vprog : vars specs. mk_vars specs prog. Defined.

The first line imports Verifiable C and its Floyd proof-automation library. The second line imports the AST of the program to be proved. Lines 3 and 4 are identical in any verification: see Chapter 28 and Chapter 48.

To prove correctness of sumarray.c, we start by writing a functional spec of adding-up-a-sequence, then an API spec of adding-up-an-array-in-C.

FUNCTIONAL MODEL. A mathematical model of this program is the sum of a sequence of integers: \(\sum_{i=0}^{n-1} x_i \). It’s conventional in Coq to use list to represent a sequence; we can represent the sum with a list-fold:

Definition sum_Z : list Z \rightarrow Z := fold_right Z.add 0.

A functional model contains not only definitions; it’s also useful to include theorems about this mathematical domain:
Lemma sum_Z_app: \(\forall a \, b, \text{sum}_Z(a++b) = \text{sum}_Za + \text{sum}_Zb. \)

Proof. intros. induction a; simpl; omega. Qed.

The data types used in a functional model can be any kind of mathematics at all, as long as we have a way to relate them to the integers, tuples, and sequences used in a C program. But the mathematical integers \(\mathbb{Z} \) and the 32-bit modular integers \(\text{Int.int} \) are often relevant. Notice that this functional spec does not depend on sumarray.v or even on anything in the Verifiable C libraries. This is typical, and desirable: the functional model is about mathematics, not about C programming.

The Application Programmer Interface (API) of a C program is expressed in its header file: function prototypes and data-structure definitions that explain how to call upon the modules’ functionality. In Verifiable C, an API specification is written as a series of function specifications (funspecs) corresponding to the function prototypes.

Definition sumarray_spec : ident * funspec :=
DECLARE _sumarray
 WITH a: val, sh : share, contents : list Z, size: Z
 PRE [_a OF (tptr tuint), _n OF tint]
 PROP(readable_share sh;
 0 \leq size \leq \text{Int.max}_{-}\text{signed};
 \text{Forall} (fun x \Rightarrow 0 \leq x \leq \text{Int.max}_{-}\text{unsigned}) contents)
 LOCAL(temp _a a; temp _n (Vint (Int.repr size)))
 SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a)
 POST [tuint]
 PROP()
 LOCAL(temp ret_temp (Vint (Int.repr (sum-Z contents))))
 SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a).

The funspec begins, Definition _f_spec := DECLARE _f ... where \(f \) is the name of the C function, and \(_f : \text{ident} \) is Coq’s name for the identifier that denotes \(f \) in the AST of the C program (see page 10).
A function is specified by its \textit{precondition} and its \textit{postcondition}. The \textsc{with} clause quantifies over \textsc{Coq} values that may appear in both the precondition and the postcondition. The precondition is parameterized by the \textsc{C}-language function parameters, and the postcondition is parameterized by a identifier \texttt{ret.temp}, which is short for, “the temporary variable holding the return value.”

Function preconditions, postconditions, and loop invariants are \textit{assertions} about the state of variables and memory at a particular program point. In an assertion $\text{PROP}(\vec{P}) \text{ LOCAL}(\vec{Q}) \text{ SEP}(\vec{R})$, the propositions in the sequence \vec{P} are all of \textsc{Coq} type \texttt{Prop}. They describe things that are true independent of program state. In the function precondition above, the statement $0 \leq \text{size} \leq \text{int.max.signed}$ is true \textit{just within the scope of the quantification of the variable size}; it is bound by \textsc{with}, and spans the \textsc{pre} and \textsc{post} assertions.

The \textsc{local} propositions \vec{Q} are \textit{variable bindings} of type \texttt{localdef}. Here, the function-parameters a and n are treated as nonaddressable local variables, or “temp” variables. The \texttt{localdef} (\texttt{temp _a a}) says that (in this program state) the contents of \textsc{C} local variable _a is the \textsc{Coq} value a.

In general, a \textsc{C} scalar variable holds something of type \texttt{val}; this type is defined by \textsc{CompCert} as,

\begin{verbatim}
Inductive val: Type := Vundef: val | Vint: int -> val | Vlong: int64 -> val
\end{verbatim}

The \textsc{sep} conjuncts \vec{R} are \textit{spatial assertions} in separation logic. In this case, there’s just one, a \texttt{data.at} assertion saying that at address _a in memory, there is a data structure of type \texttt{array[size] of unsigned integers}, with access-permission \texttt{sh}, and the contents of that array is the sequence \texttt{map Vint (map Int.repr contents)}.

The \textsc{postcondition} is introduced by \textsc{post} $[\texttt{tuint}]$, indicating that this function returns a value of type unsigned \texttt{int}. There are no \textsc{prop} statements in this postcondition—no forever-true facts hold now, that
weren’t already true on entry to the function. The LOCAL must not mention the function parameters or local variables, because they are destroyed on function exit (and because your local variable names will not be meaningful to the function’s caller); it will only mention the return-temporary ret_temp. The SEP clause mentions all the spatial resources from the precondition, minus ones that have been freed (deallocated), plus ones that have been malloc’d (allocated).

So, overall, the specification for sumarray is this: “At any call to sumarray, there exist values a, sh, contents, size such that sh gives at least read-permission; size is representable as a nonnegative 32-bit signed integer; function-parameter _a contains value a and _n contains the 32-bit representation of size; and there’s an array in memory at address a with permission sh containing contents. The function returns a value equal to sum_int(contents), and leaves the array unaltered.”

INTEGER OVERFLOW. In Verifiable C’s signed integer arithmetic, you must prove (if the system cannot prove automatically) that no overflow occurs. In unsigned integers, arithmetic is treated as modulo-\(2^n\) (where \(n\) is typically 32 or 64), and overflow is not an issue. See Chapter 24. The function \(\text{Int.repr}: \mathbb{Z} \rightarrow \text{int}\) truncates mathematical integers into 32-bit integers by taking the (sign-extended) low-order 32 bits. \(\text{Int.signed}: \text{int} \rightarrow \mathbb{Z}\) injects back into the signed integers.

This program uses unsigned arithmetic for the \(s\) and the array contents, and uses signed arithmetic for \(i\).

The postcondition guarantees that the value returned is \(\text{Int.repr} (\text{sum}_\mathbb{Z} \text{contents})\). But what if \(\sum s \geq 2^{32}\), so the sum doesn’t fit in a 32-bit signed integer? Then \(\text{Int.unsigned}(\text{Int.repr} (\text{sum}_\mathbb{Z} \text{contents})) \neq (\text{sum}_\mathbb{Z} \text{contents})\). In general, for a claim about \(\text{Int.repr}(x)\) to be useful, one also needs a claim that \(0 \leq x \leq \text{Int.max}_\text{unsigned}\) or \(\text{Int.min}_\text{signed} \leq x \leq \text{Int.max}_\text{signed}\). The caller of this function will probably need to prove \(0 \leq \text{sum}_\mathbb{Z} \text{contents} \leq \text{Int.max}_\text{unsigned}\) in order to make much use of the postcondition.
8 Proof of the sumarray program

To prove correctness of a whole program,

1. Collect the function-API specs together into Gprog: list funspec.
2. Prove that each function satisfies its own API spec (with a semax_body proof).
3. Tie everything together with a semax_func proof.

In progs/verif_sumarray.v, the first step is easy:

Definition Gprog := ltac:(with-library prog [sumarray_spec; main_spec]).

The function specs, built using DECLARE, are listed in the argument to with_library. Chapter 63 describes with_library.

In addition to Gprog, the API spec contains Vprog, the list of global-variable type-specs. This is computed automatically by the mk_varspecs tactic, as shown at the beginning of verif_sumarray.v.

Each C function can call any of the other C functions in the API, so each semax_body proof is a client of the entire API spec, that is, Vprog and Gprog. You can see that in the statement of the semax_body lemma for the _sumarray function:

Lemma body_sumarray: semax_body Vprog Gprog f_sumarray sumarray_spec.

Here, f_sumarray is the actual function body (AST of the C code) as parsed by clightgen; you can read it in sumarray.v. You can read body_sumarray as saying, In the context of Vprog and Gprog, the function body f_sumarray satisfies its specification sumarray_spec. We need the context in case the sumarray function refers to a global variable (Vprog provides the variable’s type) or calls a global function (Gprog provides the function’s API spec).
The predicate `semax_body` states the Hoare triple of the function body, \(\Delta \vdash \{ \text{Pre} \} c \{ \text{Post} \} \). \text{Pre} and \text{Post} are taken from the funspec for \(f \), \(c \) is the body of \(F \), and the type-context \(\Delta \) is calculated from the global type-context overlaid with the parameter- and local-types of the function.

To prove this, we begin with the tactic `start_function`, which takes care of some simple bookkeeping and expresses the Hoare triple to be proved.

Lemma body_sumarray: `semax_body Vprog Gprog f_sumarray sumarray_spec`.
Proof.
`start_function`.

The proof goal now looks like this:

```
Espec : OracleKind
a : val
sh : share
contents : list Z
size : Z
Delta_spec := abbreviate : PTree.t funspec
Delta := abbreviate : tycontext
SH : readable_share sh
H : 0 \leq \text{size} \leq \text{Int} . \text{max}_\text{signed}
H0 : \text{Forall} (\text{fun} \ x : Z \Rightarrow 0 \leq x \leq \text{Int} . \text{max}_\text{unsigned} ) \text{contents}
POSTCONDITION := abbreviate : ret_assert
MORE_COMMANDS := abbreviate : statement
---------------------------------------------------------------------(1/1)
semax Delta
(\text{PROP} ()
  \text{LOCAL}(\text{temp} .a a; \text{temp} .n (\text{Vint} (\text{Int} . \text{repr} \text{size})))
  \text{SEP}(\text{data} @ sh (\text{tarray} \text{tu}nt \text{size}) (\text{map} Vint (\text{map} \text{Int} . \text{repr} \text{contents} )) a))
(\text{Ssequence} (\text{Sset} .i (\text{Econst} \text{int} (\text{Int} . \text{repr} 0) \text{tint} )) \text{MORE_COMMANDS})
\text{POSTCONDITION}
```
First we have `Espec`, which you can ignore for now (it characterizes the outside world, but `sumarray.c` does not do any I/O). Then `a,sh,contents,size` are exactly the variables of the `WITH` clause of `sumarray_spec`.

The two abbreviations `Delta_spec, Delta` are the type-context in which Floyd’s proof tactics will look up information about the types of the program’s variables and functions. The hypotheses `SH,H,H0` are exactly the `PROP` clause of `sumarray_spec`’s precondition. The `POSTCONDITION` is exactly the `POST` part of `sumarray_spec`.

To see the contents of an abbreviation, either (1) set your IDE to show implicit arguments, or (2) unfold abbreviate in `POSTCONDITION`.

Below the line we have one proof goal: the Hoare triple of the function body. In general, any C statement `c` might satisfy a Hoare-logic judgment \(\Delta \vdash \{P\} c \{R\} \) when, in global context \(\Delta \), started in a state satisfying precondition `P`, statement `c` is sure not to crash and, if it terminates, the final state will satisfy `R`. We write the Hoare judgement in Coq as `semax (\(\Delta \): tycontext) (P: environ→mpred) (c: statement) (R: ret_assert).

\(\Delta \) is a type context, giving types of function parameters, local variables, and global variables; and specifications (funspec) of global functions.

`P` is the precondition;
`c` is a command in the C language; and
`R` is the postcondition. Because a `c` statement can exit in different ways (fall-through, continue, break, return), a `ret_assert` has predicates for all of these cases.

Right after `start_function`, the command `c` is the entire function body.

Because we do forward Hoare-logic proof, we won’t care about the postcondition until we get to the end of `c`, so here we hide it away in an abbreviation. Here, the command `c` is a long sequence starting with `i=0;...more`, and we hide the `more` in an abbreviation `MORE_COMMANDS`.
The precondition of this semax has LOCAL and SEP parts taken directly from the funspec (the PROP clauses have been moved above the line). The statement (Sset .i (Econst_int (Int.repr 0) tint)) is the AST generated by clightgen from the C statement i=0;.
We do Hoare logic proof by forward symbolic execution. On page 18 we show the proof goal at the beginning of the sumarray function body. In a forward Hoare logic proof of $\{P\} i = 0; \{R\}$ we might first apply the sequence rule,

$$
\frac{\{P\} i = 0; \{Q\} \quad \{Q\} \text{more} \{R\}}{\{P\} i = 0; \text{more} \{R\}}
$$

assuming we could derive some appropriate assertion Q. For many kinds of statements (assignments, return, break, continue) this is done automatically by the forward tactic, which applies a strongest-postcondition style of proof rule to derive Q. When we execute forward here, the resulting proof goal is,

Espec, a, sh, contents, size, Delta_spec, SH, H, H0 as before

Delta := abbreviate : tycontext
POSTCONDITION := abbreviate : ret_assert
MORE_COMMANDS := abbreviate : statement

semax Delta
 (PROP ()
 LOCAL(temp _i (Vint (Int.repr 0))); temp _a a;
 temp _n (Vint (Int.repr size)))
 SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))
 (Ssequence (Sset_s (Econst_int (Int.repr 0) tuint)) MORE_COMMANDS)
POSTCONDITION

Notice that the precondition of this semax is really the postcondition Q of the $i=0$; statement; it is the precondition of the next statement, $s=0$;. It’s much like the precondition of $i=0$; what has changed?

- The LOCAL part contains temp _i (Vint (Int.repr 0)) in addition to what it had before; this says that the local variable i contains integer value zero.
• the command is now $s=0; more$, where MORE_COMMANDS no longer contains $s=0;$.
• Delta has changed; it now records the information that i is initialized.

Applying the forward again will go through $s=0;$ to yield a proof goal with a LOCAL binding for the _s variable.

FORWARD works on several kinds of C commands. In each of the following cases, x must be a nonaddressable local variable, a temp.

c1; c2 Sequence of commands. The forward tactic will work on c_1 first.
(c1; c2); c3 In this case, forward will re-associate the commands using the seq_assoc axiom, and work on $c_1; (c_2; c_3)$.

x=E; Assignment statement. Expression E must not contain memory dereferences (loads or stores using *prefix, suffix[], or -> operators). No restrictions on the form of the precondition (except that it must be in canonical form, PROP/LOCAL/SEP). The expression &p→next is permitted, since it does not actually load or store (it just computes an address).

x= *E; Memory load.

x= a[E]; Array load.

x= E→fld; Field load.

x= E→f1.f2; Nested field load; see Chapter 32.

x= E→f1[i].f2; Fields and subscripts; see Chapter 32.

E1 = E2; Memory store. Expression E_2 must not dereference memory. Expression E_1 must be equivalent to a single memory store via some access path (see Chapter 32), and the precondition must contain an appropriate storable data_at or field_at.

if (E) C1 else C2 For an if-statement, use forward_if and (perhaps) provide a postcondition.

while (E) C For a while-loop, use the forward_while tactic (page 26) and provide a loop invariant.

break; The forward tactic works.

continue; The forward tactic works.
return E; Expression E must not dereference memory, and the presence/absence of E must match the nonvoid/void return type of the function. The proof goal left by forward is to show that the precondition (with appropriate substitution for the abstract variable ret_var) entails the function’s postcondition.

\[x = f(a_1, \ldots, a_n); \] For a function call, use forward-call (see Chapter 20).
11 Hint

In any VST proof state, running the hint tactic will print a suggestion (if it can) that will help you make progress in the proof. In stepping through the case studies described in this reference manual, insert hint. at any point to see what it says.
12 If, While, For

To do forward proof through if-statements, while-loops, and for-loops, you need to provide additional information: join-postconditions, loop invariants, etc. The tactics are forward_if, forward_while, forward_for, forward_for_simple_bound.

If you’re not sure which tactic to use, and with how many arguments, just use forward, and the error message will make a suggestion.

- **if** then s_1 else s_2; s_3...

 Use forward_if Q, where Q is the join postcondition, the precondition of statement s_3. Q may be a full assertion (environ→mpred), or it may be just a Prop, in which case it will be added to the current precondition.

- **if** then s_1 else s_2;}

 When the if-statement appears at the end of a block, so the postcondition is already known, you can do forward_if. That is, you don’t need to supply a join postcondition if POSTCONDITION is fully instantiated, without any unification variables. You can unfold abbreviate in POSTCONDITION to see.

 When one (or both) of your then/else branches exits by break, continue, or return then you don’t need to supply a join postcondition.

- **while**(e)s;… (no break statements in s)

 You write forward_while Q, where Q is a loop invariant. See Chapter 13.

- **while**(e)s;… (with break statements in s)

 You must treat this as if it were for(;;) s; see below.

- **for**(e$_1$;e$_2$;e$_3$) s

 Use a tactic for for-loops:

 forward_for_simple_bound (Chapter 49),
 forward_for (Chapter 50), or
 forward_loop (Chapter 51).
13 While loops

To prove a \textit{while} loop by forward symbolic execution, you use the tactic \texttt{forward-while}, and you must supply a loop invariant. Take the example of the \texttt{forward-while} in progs/verif_sumarray.v. The proof goal is,

\begin{verbatim}
Espec, Delta_specs, Delta
a : val, sh : share, contents : list Z, size : Z
SH : readable_share sh
H : 0 ≤ size ≤ \text{Int.max_signed}
H0 : \text{Forall (fun x : Z ⇒ 0 ≤ x ≤ Int.max_unsigned) contents}
POSTCONDITION := abbreviate : ret_assert
MORE_COMMANDS, LOOP_BODY := abbreviate : statement
---(1/1)
semax Delta
PROP ()
LOCAL(temp _s (Vint (Int.repr 0)); temp _i (Vint (Int.repr 0));
 temp _a a; temp _n (Vint (Int.repr size)))
SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))
(Ssequence
 (Swhile (Ebinop Olt (Etempvar _i tint) (Etempvar _n tint) tint)
 LOOP_BODY)
 MORE_COMMANDS)
POSTCONDITION
\end{verbatim}

A loop invariant is an assertion, almost always in the form of an existential \texttt{EX...PROP(...)}\texttt{LOCAL(...)}\texttt{SEP(...)}. Each iteration of the loop has a state characterized by a different value of some iteration variable(s), the \texttt{EX} binds that value. The invariant for the sumarray loop is,

\begin{verbatim}
EX i : Z,
PROP(0 ≤ i ≤ size)
LOCAL(temp _a a; temp _i (Vint (Int.repr i)); temp _n (Vint (Int.repr size));
 temp _s (Vint (Int.repr (sum_Z (sublist 0 i contents)))))
SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a).
\end{verbatim}
The existential binds \(i \), the iteration-dependent value of the local variable named \(_i \). In general, there may be any number of \(\text{EX} \) quantifiers.

The forward-while tactic will generate four subgoals to be proved:

1. the precondition (of the whole loop) implies the loop invariant;
2. the loop-condition expression type-checks (i.e., guarantees to evaluate successfully);
3. the postcondition of the loop body implies the loop invariant;
4. the loop invariant (and negation of the loop condition) is a strong enough precondition to prove the MORECOMMANDS after the loop.

Let’s take a look at that first subgoal:

\[
\begin{align*}
&\text{(above-the-line hypotheses elided)} \\
&\text{ENTAIL Delta,} \\
&\quad \text{PROP()} \\
&\quad \text{LOCAL}(\text{temp } _s (\text{Vint } (\text{Int.repr } 0)); \text{temp } _i (\text{Vint } (\text{Int.repr } 0)); \\
&\quad \quad \text{temp } _a a; \text{temp } _n (\text{Vint } (\text{Int.repr size}))) \\
&\quad \text{SEP}(\text{data.at sh (tarray tuint size) (map Vint (map Int.repr contents)) } a) \\
&\quad \vdash \text{EX } i : Z, \\
&\quad \text{PROP}(0 \leq i \leq \text{size}) \\
&\quad \text{LOCAL}(\text{temp } _a a; \text{temp } _i (\text{Vint } (\text{Int.repr } i))); \\
&\quad \quad \text{temp } _n (\text{Vint } (\text{Int.repr size})); \\
&\quad \quad \text{temp } _s (\text{Vint } (\text{Int.repr } (\text{sum.Z } (\text{sublist } 0 \ i \ \text{contents})))))) \\
&\quad \text{SEP}(\text{data.at sh (tarray tuint size) (map Vint (map Int.repr contents)) } a)
\end{align*}
\]

This is an entailment goal; Chapter 15 shows how to prove such goals.
Each element of a SEP clause is a spatial predicate, that is, a predicate on some part of the memory. The Coq type for a spatial predicate is mpred; it can be thought of as $\text{mem} \rightarrow \text{Prop}$ (but is not quite the same, for quite technical semantic reasons).

The SEP represents the separating conjunction of its spatial predicates. When we write spatial predicates outside of a PROP/LOCAL/SEP, we use \ast instead of semicolon to indicate separating conjunction.

The LOCAL part of an assertion is a local predicate, that is, a predicate about the values of local variables. It's an ordinary conjunction (not separating) of its individual temp and lvar clauses. You can think of a local predicate as Coq type $\text{environ} \rightarrow \text{Prop}$, where environ is the type of run-time local-variable frames.

A program assertion (precondition, postcondition, loop invariant, etc.) is a predicate both on its local-var environ and its memory. Its Coq type is $\text{environ} \rightarrow \text{mpred}$. If you do the Coq command, Check (PROP()LOCAL()SEP()) then Coq replies, $\text{environ} \rightarrow \text{mpred}$. We call assertions of this type lifted predicates.

The canonical form of a lifted assertion is $\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(\vec{R})$, where \vec{P} is a list of propositions (Prop), where \vec{Q} is a list of local-variable definitions (localdef), and \vec{R} is a list of base-level assertions (mpred). Each list is semicolon-separated.

The existential quantifier EX can also be used on canonical forms, e.g., $\text{EX}\ x:T, \text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(\vec{R})$.
15 Entailments

An entailment in separation logic, $P \vdash Q$, says that any state satisfying P must also satisfy Q. In Verifiable C, if P and Q are mpreds, then any mem satisfying P must also satisfy Q. If P and Q are lifted predicates, then any environ\timesmem satisfying P must also satisfy Q.

Usually we write lifted entailments as $\text{ENTAIL} \Delta, P \vdash Q$ in which Δ is the global type context, providing additional constraints on the state.

Verifiable C’s rule of consequence is,

$$
\begin{array}{c}
\text{ENTAIL} \Delta, P \vdash P' \\
\text{semax} \Delta P' \ c Q' \\
\text{ENTAIL} \Delta, Q' \vdash Q \\
\text{semax} \Delta P \ c Q
\end{array}
$$

Using this axiom (called semax_pre_post) on a proof goal $\text{semax} \Delta P \ c Q$ yields three subgoals: another semax and two (lifted) entailments, $\text{ENTAIL} \Delta, P \vdash P'$ and $\text{ENTAIL} \Delta, Q \vdash Q'$. P and Q are typically in the form $\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(\vec{R})$, perhaps with some EX quantifiers in the front. The turnstile \vdash is written in Coq as $\mid\!\mid\!\mid$.

Let’s consider the entailment arising from forward_while in the progs/verif_sumarray.v example:

$H : 0 \leq \text{size} \leq \text{Int.max_signed}$

(\text{other above-the-line hypotheses elided})

$\text{ENTAIL} \Delta,$

\begin{align*}
\text{PROP}() \\
\text{LOCAL}(\text{temp }_s (\text{Vint (Int.repr 0)}); \text{temp }_i (\text{Vint (Int.repr 0)}); \\
\text{temp }_a a; \text{temp }_n (\text{Vint (Int.repr size)})) \\
\text{SEP}(\text{data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a}) \\
\end{align*}

$\vdash \text{EX } i : \text{Z},$

\begin{align*}
\text{PROP}(0 \leq i \leq \text{size}) \\
\text{LOCAL}(\text{temp }_a a; \text{temp }_i (\text{Vint (Int.repr i)}); \\
\text{temp }_n (\text{Vint (Int.repr size)}); \\
\text{temp }_s (\text{Vint (Int.repr (sum_Z (sublist 0 i contents))})) \\
\text{SEP}(\text{data-at sh (tarray tuint size) (map Vint (map Int.repr contents)) a})
\end{align*}
We instantiate the existential with the only value that works here, zero:
\textbf{Exists} 0. \textbf{Chapter 23} explains how to handle existentials with \textbf{Intros} and \textbf{Exists}.

Now we use the entailer! tactic to solve as much of this goal as possible (see \textbf{Chapter 40}). In this case, the goal solves entirely automatically. In particular, $0 \leq i \leq \text{size}$ solves by \textit{omega}; sublist $0 \ 0$ contents rewrites to nil; and \textit{sum-Z} nil simplifies to 0.

The second subgoal of forward_while in progs/verif_sumarray.v is a \textit{type-checking entailment}, of the form $\text{ENTAIL} \ \Delta, \ PQR \vdash \text{tc-expr} \ \Delta \ e$ where e is (the abstract syntax of) a C expression; in the particular case of a \textit{while} loop, e is the negation of the loop-test expression. The assertion $\text{tc-expr} \ \Delta \ e$ says that executing e won’t crash: all the variables it references exist and are initialized; and it doesn’t divide by zero, et cetera.

In this case, the entailment concerns the expression $\neg (i < n)$,

\text{ENTAIL} \ \Delta, \ \text{PROP}(... \ \text{LOCAL}(... \ \text{SEP}(...) \\
\vdash \text{tc-expr} \ \Delta \\
(E\text{unop} \ \text{Onotbool} \ (E\text{binop} \ \text{Olt} \ (E\text{tempvar} \ .i \ \text{tint}) \ (E\text{tempvar} \ .n \ \text{tint}) \ \text{tint}) \ \text{tint})$

This solves completely via the entailer! tactic. To see why that is, instead of doing entailer!, do unfold \text{tc-expr}; simpl. You’ll see that the right-hand side of the entailment simplifies down to $!!\text{True}$, (equivalent to TT, the “true” mpred). That’s because the typechecker is \textit{calculational}, as Chapter 25 of \textit{Program Logics for Certified Compilers} explains.
16 Array subscripts

The third subgoal of forward_while in progs/verif_sumarray.v is the body of the while loop: \{x=a[i]; s+=x; i++;\}.

This can be handled by three forward commands, but the first one needs a bit of extra help. To see why, try doing forward just before the assert_PROP instead of after. You’ll see an error message saying that it can’t prove \(0 \leq i < Z\)length contents. Indeed, the command \(x=a[i];\) is safe only if \(i\) is in-bounds of the array \(a\).

Let’s examine the proof goal:

\[
\begin{align*}
SH &: \text{readable_share}\ sh \\
H &: 0 \leq \text{size} \leq \text{Int.max_signed} \\
H0 &: \text{Forall} (\text{fun} \ x : Z \Rightarrow 0 \leq x \leq \text{Int.max_unsigned}) \ \text{contents} \\
i &: Z \\
HRE &: i < \text{size} \\
H1 &: 0 \leq i \leq \text{size} \\
\end{align*}
\]

semex Delta
(\text{PROP} ()
 \text{LOCAL}(\text{temp} _a\ a; \text{temp} _i\ (\text{Vint} (\text{Int}_\text{repr}\ i));
 \text{temp} _n\ (\text{Vint} (\text{Int}_\text{repr}\ \text{size}));
 \text{temp} _s\ (\text{Vint} (\text{Int}_\text{repr}\ (\text{sum}_\text{Z}\ \text{(sublist} 0\ i\ \text{contents}))))))
\text{SEP}(\text{data} _\text{at}\ sh\ (\text{tarray}\ \text{tuint}\ \text{size})\ (\text{map} \ \text{Vint}\ (\text{map} \ \text{Int}_\text{repr}\ \text{contents}))\ a))
\text{(Ssequence}
 \text{(Sset} _x
 \text{(Ederef}
 \text{(Ebinop} O\text{add}\ (\text{Etempvar} _a\ (\text{tptr}\ \text{tuint}))\ (\text{Etempvar} _i\ \text{tint})
 \text{(tptr}\ \text{tuint}))\ \text{tuint}))\ \text{MORE_COMMANDS})\ \text{POSTCONDITION}
\]

The Coq variable \(i\) was introduced automatically by forward_while from the existential variable, the \(\text{EX} i:Z\) of the loop invariant.
Going forward through $x = a[i]$; will be enabled by the data_at in the precondition, as long as the subscript value is less than the length of contents. One important property of data_at $\pi (\text{tarray } \tau \ n) \sigma \ p$ is that $n = Z\text{length}(\sigma)$. If we had that fact above the line, then (using assumptions HRE and H) it would be easy to prove $0 \leq i < Z\text{length contents}$.

Therefore, we write,

\begin{verbatim}
assert_PROP (Zlength contents = size). {
 entailer!. do 2 rewrite Zlength_map. reflexivity.
}
\end{verbatim}

Chapter 42 describes assert_PROP, which (like Coq's standard assert) will put $Z\text{length contents}=\text{size}$ above the line. The first subgoal of assert_PROP requires us to prove the proposition, using facts from the current Hoare precondition (which would not be accessible to Coq's standard assert). The reason this one is so easily provable is that entailer! extracts the $n = Z\text{length}(\sigma)$ fact from data_at and puts it above the line.

The second subgoal is just like the subgoal we had before doing assert_PROP, but with the new proposition above the line. Now that H_2: $Z\text{length contents} = \text{size}$ is above the line, forward succeeds on the array subscript.

Two more forward commands take us to the end of the loop body.
17 At the end of the loop body

In progs/verif_sumarray.v, at the comment “Now we have reached the end of the loop body,” it is time to prove that the current precondition (which is the postcondition of the loop body) entails the loop invariant. This is the proof goal:

\[H : 0 \leq \text{size} \leq \text{Int.max_signed} \]
\[H0 : \text{Forall (fun x : Z \Rightarrow 0 \leq x \leq \text{Int.max_unsigned}) contents} \]
\[HRE : i < \text{size} \]
\[H1 : 0 \leq i \leq \text{size} \]

(other above-the-line hypotheses elided)

\[\text{ENTAIL Delta,} \]
\[\text{PROP()} \]
\[\text{LOCAL(temp _i (Vint (Int.add (Int.repr i) (Int.repr 1))));} \]
\[\text{temp _s} \]
\[\text{ (force_val} \]
\[\text{ (sem_add_default tint tint} \]
\[\text{ (Vint (Int.repr (sum_Z (sublist 0 i contents)))))} \]
\[\text{ (Znth i (map Vint (map Int.repr contents)))))}; \]
\[\text{temp _x (Znth i (map Vint (map Int.repr contents))));} \]
\[\text{temp _a a; temp _n (Vint (Int.repr size))}) \]
\[\text{SEP(data_at sh (tarray ttuint size) (map Vint (map Int.repr contents)) a)} \]
\[\vdash \text{EX a_0 : Z,} \]
\[\text{PROP(0 \leq a_0 \leq size)} \]
\[\text{LOCAL(temp _a a; temp _i (Vint (Int.repr a_0))}; \]
\[\text{temp _n (Vint (Int.repr size))}; \]
\[\text{temp _s (Vint (Int.repr (sum_Z (sublist 0 a_0 contents)))))} \]
\[\text{SEP(data_at sh (tarray ttuint size) (map Vint (map Int.repr contents)) a)} \]

The right-hand side of this entailment is just the loop invariant. As usual at the end of a loop body, there is an existentially quantified variable that must be instantiated with an iteration-dependent value. In this case it’s obvious: the quantified variable represents the contents of C local variable _i, so we do, \textbf{Exists} (i+1).
The resulting entailment has many trivial parts and a nontrivial residue. The usual way to get to the hard part is to run entailer!, which we do now. After clearing away the irrelevant hypotheses, we have:

\[
H : 0 \leq Z\text{length contents} \leq \text{Int.max_signed} \\
HRE : i < Z\text{length contents} \\
H1 : 0 \leq i \leq Z\text{length contents}
\]

\[
\frac{}{(1/1)}
\]

\[
\text{Vint (Int.repr (sum-Z (sublist 0 (i + 1) contents)))} = \\
\text{Vint (Int.repr (sum-Z (sublist 0 i contents) + Znth i contents))}
\]

Applying \text{f_equal} twice, leaves the goal,

\[
\text{sum-Z (sublist 0 (i + 1) contents)} = \\
\text{sum-Z (sublist 0 i contents) + Znth i contents}
\]

Now the lemma \text{sublist_split} is helpful here:

\[
\text{sublist_split}: \forall l \, m \, h \, al, \quad 0 \leq l \leq m \leq h \leq |al| \rightarrow \\
\quad \text{sublist} \, l \, h \, al = \text{sublist} \, l \, m \, al ++ \text{sublist} \, m \, h \, al
\]

So we do, rewrite (sublist_split 0 i (i+1)) by omega. A bit more rewriting with the theory of \text{sum_Z} and \text{sublist} finishes the proof.

See also: Chapter 58 (sublist).
18 Returning from a function

In progs/verif_sumarray.v, at the comment “After the loop,” we have reached the return statement. The forward tactic works here, leaving a proof goal that the precondition of the return entails the postcondition of the function-spec. (Sometimes the entailment solves automatically, leaving no proof goal at all.) The goal is a lowered entailment (on mpred assertions).

\[H4 : \forall (\text{value_fits\ tuint}) (\text{map Vint (map Int_repr contents)}) \]
\[H2 : \text{field_compatible (Tarray tuint (Zlength \ldots) noattr) __ a} \]
\[__ (\text{other above-the-line hypotheses elided}) \]
\[\text{data_at sh (tarray tuint (Zlength \ldots)) (map Vint (map Int_repr contents)) a} \]
\[\vdash \mathbf{!!}(\text{Vint (Int_repr (sum_Z contents)) =}} \]
\[\text{Vint (Int_repr (sum_Z (sublist 0 i contents)))}} \]

The left-hand side of this entailment is a spatial predicate (data_at). Purely nonspatial facts (H4 and H2) derivable from it have already been inferred and moved above the line by saturate_local (see Chapter 36).

In general the right-hand side of a lowered entailment is \(\mathbf{!!}P \&\& R \), where \(P \) is a conjunction of propositions (Prop) and \(R \) is a separating conjunction of spatial predicates. The \(\mathbf{!!} \) operator converts a Prop into an mpred.

This entailment’s right-hand side has no spatial predicates. That’s because, in the sumarray function, the SEP clause of the funspec’s postcondition had exactly the same data_at clause as we see here in the entailment precondition, and the entailment-solver called by forward has already cleared it away.

We can proceed by using entailer! The remaining subgoal solves easily in the theory of sublists. The proof of the function sumarray is now complete.
19 Global variables and main()

C programs may have “extern” global variables, either with explicit initializers or initialized by default. Any function that accesses a global variable must have the appropriate spatial assertions in its funspec’s precondition (and postcondition). But the main function is special: it has spatial assertions for all the global variables. Then it may pass these on, piecemeal, to the functions it calls on an as-needed basis.

The function-spec for the sumarray program’s main is,

Definition main_spec :=
 DECLARE _main
 WITH gv : globals
 PRE [] main_pre prog gv
 POST [tint]
 (* application-specific postcondition *)
 PROP()
 LOCAL(temp ret_temp (Vint (Int.repr (1+2+3+4))))
 SEP(TT).

The first four lines are always the same for any program. main_pre calculates the precondition automatically from the list of extern global variables and initializers of the program.

Now, when we prove that main satisfies its funspec,

Lemma body_main: semax_body Vprog Gprog f_main main_spec.
Proof.
start_function.

the start_function tactic “unpacks” main_pre into an assertion:
The LOCAL clause means that the C global variable _four is at memory address (gv _four). See Chapter 34.

The SEP clause means that there’s data of type “array of 4 integers” at address (gv _four), with access permission Ews and contents [1;2;3;4]. Ews stands for “external write share,” the standard access permission of extern global writable variables. See Chapter 44.

The sumarray program’s main_spec postcondition is specific to this program: we say that main returns the value 1 + 2 + 3 + 4.

The postcondition’s SEP clause says TT; we cannot say simply SEP() because that is equivalent to emp in separation logic, enforcing the empty resource. But memory is not empty: it still contains all the initialized extern global variable four. So we give a looser spatial postcondition, TT (equivalent to True in separation logic).
20 Function calls

Continuing our example, the Lemma body_main in verif_sumarray.v:

Now it’s time to prove the function-call statement, \(s = \text{sumarray}(\text{four}, 4) \). When proving a function call, one must supply a witness for the WITH clause of the function-spec. The \text{_sumarray} function’s WITH clause (page 14) starts,

\[
\text{Definition } \text{sumarray}_\text{spec} := \\
\text{DECLARE } _\text{sumarray} \\
\text{WITH } a: \text{val}, \text{sh} : \text{share}, \text{contents : list } Z, \text{size: } Z
\]

so the type of the witness will be \((\text{val}*(\text{share}*(\text{list } Z * Z)))\). To choose the witness, examine your actual parameter values (along with the precondition of the funspec) to see what witness would be consistent; here, we use \((v_{\text{four}}, E_{\text{ws}}, f_{\text{our contents}}, 4)\) as follows:

\[
\text{forward-call } (v_{\text{four}}, E_{\text{ws}}, f_{\text{our contents}}, 4).
\]

The \text{forward-call} tactic (usually) leaves subgoals: you must prove that your current precondition implies the funspec’s precondition. Here, these solve easily, as shown in the proof script.

Finally, we are at the return statement. See Chapter 18. In this case, the forward tactic is able to prove (using a form of the entailer tactic) that the current assertion implies the postcondition of _main.
21 Tying all the functions together

We build a whole-program proof by composing together the proofs of all the function bodies. Consider Gprog, the list of all the function specifications:

Definition $Gprog : \text{funspecs} := \text{sumarray}_\text{spec} :: \text{main}_\text{spec} :: \text{nil}.$

Each `semax_body` proof says, assuming that *all the functions I might call* behave as specified, then *my own function-body* indeed behaves as specified:

Lemma `body_sumarray`: `semax_body Vprog Gprog f_sumarray sumarray_spec`.

Note that *all the functions I might call* might even include “myself,” in the case of a recursive or mutually recursive function.

This might seem like circular reasoning, but (for partial correctness) it is actually sound—by the miracle of step-indexed semantic models, as explained in Chapters 18 and 39 of *Program Logics for Certified Compilers*.

The rule for tying the functions together is called `semax_func`, and its use is illustrated in this theorem, the main proof-of-correctness theorem for the program `sumarray.c`:

Lemma `prog_correct`: `semax_prog prog Vprog Gprog`.

Proof.

prove `semax_prog`.

`semax_func_cons body_sumarray`.

`semax_func_cons body_main`.

Qed.

The calls to `semax_func_cons` must appear in the same order as the functions appear in `prog.(prog_defs)`.
22 *Separation logic*: $\text{EX}, *, \text{emp}, !!$

These are the operators and primitives of *spatial predicates*, that is, the kind that can appear as conjuncts of a SEP.

\[
R ::= \text{emp} \quad \text{empty} \\
TT \quad \text{True} \\
FF \quad \text{False} \\
R_1 * R_2 \quad \text{separating conjunction} \\
R_1 \&\& R_2 \quad \text{ordinary conjunction} \\
\text{field}_\text{at} \pi \tau \vec{f}ld \upsilon p \quad \text{“field maps-to”} \\
\text{data}_\text{at} \pi \tau \upsilon p \quad \text{“maps-to”} \\
\text{array}_\text{at} \tau \pi \upsilon \text{lo hi} \quad \text{array slice} \\
!!P \quad \text{pure proposition} \\
\text{EX} x : T, R \quad \text{existential quantification} \\
\text{ALL} x : T, R \quad \text{universal quantification} \\
R_1 \| R_2 \quad \text{disjunction} \\
wand R R' \quad \text{magic wand} R \rightarrow* R' \\
\ldots \quad \text{other operators, including user definitions}
\]
23 EX, Intros, Exists

In a canonical-form lifted assertion, existentials can occur at the outside, or in one of the base-level conjuncts within the SEP clause. The left-hand side of this assertion has both:

\[\text{ENTAIL } \Delta, \quad \text{(* this example in progs/tutorial1.v *)} \]
\[\text{EX } x : Z, \]
\[\text{PROP}(0 \leq x) \quad \text{LOCAL}(\text{temp } _i (\text{Vint } (\text{Int}.\text{repr } x))) \]
\[\text{SEP}(\text{EX } y : Z, \text{!!}(x < y) \&\& \text{data} _\pi \text{tint } (\text{Vint } (\text{Int}.\text{repr } y)) p) \]
\[\vdash \text{EX } u : Z, \]
\[\text{PROP}(0 < u) \quad \text{LOCAL()} \]
\[\text{SEP}(\text{data} _\pi \text{tint } (\text{Vint } (\text{Int}.\text{repr } u)) p) \]

To prove this entailment, one can first move \(x \) and \(y \) “above the line” by the tactic \textbf{Intros} \(a \ b \):

\begin{align*}
 a & : Z \\
 b & : Z \\
 H & : 0 \leq a \\
 H0 & : a < b
\end{align*}

\[\text{ENTAIL } \Delta, \]
\[\text{PROP()} \quad \text{LOCAL}(\text{temp } _i (\text{Vint } (\text{Int}.\text{repr } a))) \]
\[\text{SEP}(\text{data} _\pi \text{tint } (\text{Vint } (\text{Int}.\text{repr } b)) p) \]
\[\vdash \text{EX } u : Z, \]
\[\text{PROP}(0 < u) \quad \text{LOCAL()} \]
\[\text{SEP}(\text{data} _\pi \text{tint } (\text{Vint } (\text{Int}.\text{repr } u)) p) \]

One might just as well say \textbf{Intros} \(x \ y \) to use those names instead of \(a \ b \). Note that the propositions (previously hidden inside existential quantifiers) have been moved above the line by \textbf{Intros}. Also, if there had been any separating-conjunction operators \(* \) within the SEP clause, those will be “flattened” into semicolon-separated conjuncts within SEP.

Sometimes, even when there are no existentials to introduce, one wants
to move PROP propositions above the line and flatten the * operators into semicolons. One can just say \texttt{Intros} with no arguments to do that.

If you want to Intro an existential \textit{without} PROP-introduction and \texttt{*}-flattening, you can just use \texttt{Intro} \texttt{a}, instead of \texttt{Intros} \texttt{a}.

Then, instantiate \(u\) by \texttt{Exists} \texttt{b}.

\[
\begin{align*}
 a & : Z \\
 b & : Z \\
 H & : 0 \leq a \\
 H0 & : a < b
\end{align*}
\]

\begin{verbatim}
ENTAIL \Delta,
 PROP() LOCAL(temp i (Vint (Int.repr a))))
 SEP(data.at \pi tint (Vint (Int.repr b)) p)
\vdash PROP(0 < b) LOCAL()
 SEP(data.at \pi tint (Vint (Int.repr b)) p)
\end{verbatim}

This entailment proves straightforwardly by entailer!.
24 Integers: nat, Z, int

Coq’s standard library has the natural numbers nat and the integers Z.

C-language integer values are represented by the type Int.int (or just int for short), which are 32-bit two’s complement signed or unsigned integers with mod-2^{32} arithmetic. Chapter 54 describes the operations on the int type.

For most purposes, specifications and proofs of C programs should use Z instead of int or nat. Subtraction doesn’t work well on naturals, and that screws up many other kinds of arithmetic reasoning. Only when you are doing direct natural-number induction is it natural to use nat, and so you might then convert using Z.to_nat to do that induction.

Conversions between Z and int are done as follows:

- Int.repr: $Z \rightarrow \text{int}$
- Int.unsigned: $\text{int} \rightarrow Z$
- Int.signed: $\text{int} \rightarrow Z$

with the following lemmas:

\[
\text{Int.repr_unsigned} \quad \text{Int.repr(\text{Int.unsigned } z)} = z
\]

\[
\text{Int.unsigned_repr} \quad 0 \leq z \leq \text{Int.max_unsigned} \quad \text{Int.unsigned(\text{Int.repr } z)} = z
\]

\[
\text{Int.repr_signed} \quad \text{Int.repr(\text{Int.signed } z)} = z
\]

\[
\text{Int.signed_repr} \quad \text{Int.min_signed} \leq z \leq \text{Int.max_signed} \quad \text{Int.signed(\text{Int.repr } z)} = z
\]

Int.repr truncates to a 32-bit twos-complement representation (losing information if the input is out of range). Int.signed and Int.unsigned are different injections back to Z that never lose information.
When doing proofs about signed integers, you must prove that your integers never overflow; when doing proofs about unsigned integers, it's still a good idea to prove that you avoid overflow. That is, if the C variable \(-x\) contains the value \(\text{Vint} (\text{Int.repr} \ x)\), then make sure \(x\) is in the appropriate range. Let's assume that \(-x\) is a signed integer, i.e. declared in C as int \(x\); then the hypothesis is,

\[
H: \text{Int.min}_\text{signed} \leq x \leq \text{Int.max}_\text{signed} \quad (* \text{this example in progs/tutorial1.v} *)
\]

If you maintain this hypothesis "above the line", then Floyd's tactical proof automation can solve goals such as \(\text{Int.signed} (\text{Int.repr} \ x) = x\). Also, to solve goals such as,

\[
\cdots H2 : 0 \leq n \leq \text{Int.max}_\text{signed} \quad (* \text{this example in progs/tutorial1.v} *)
\cdots
\]

\[
\text{------------------------}
\text{Int.min}_\text{signed} \leq 0 \leq n
\]

you can use the \text{rep_omega} tactic (see ??), which is basically just omega with knowledge of the values of \(\text{Int.min}_\text{signed}\), \(\text{Int.max}_\text{signed}\), and \(\text{Int.max}_\text{unsigned}\).

To take advantage of this, put conjuncts into the PROP part of your function precondition such as \(0 \leq i < n; \ n \leq \text{Int.max}_\text{signed}\). Then the \text{start.function} tactic will move them above the line, and the other tactics mentioned above will make use of them.

To see an example in action, look at progs/verif_sumarray.v. The funspec's precondition contains,

\[
\text{PROP(... 0 \leq size \leq \text{Int.max}_\text{signed};}
\quad \text{Forall (fun } x \Rightarrow 0 \leq x \leq \text{Int.max}_\text{unsigned}) \text{ contents)}
\]

to ensure that \(\text{size}\) is representable as a nonnegative signed integer, and each element of \(\text{contents}\) is representable as an unsigned.
25 Int, Int8, Int16, Int64, Ptrofs

C programs use signed and unsigned integers of various sizes: 8-bit (signed char, unsigned char), 16-bit (signed short, unsigned short), 32-bit (int, unsigned int), 64-bit (long, unsigned long).

A C compiler may be “32-bit” in which case sizeof(void*)=4 or “64-bit” in which case sizeof(void*)=8. The macro size_t is defined in the C standard library as a typedef for the appropriate signed integer, typically unsigned int on a 32-bit system and unsigned long on a 64-bit system.

To talk about integer values in all of these sizes, which have \(n \)-bit modular arithmetic (if unsigned) or \(n \)-bit twos-complement arithmetic (if signed), CompCert has several instantiations of the Integers module:

- `Int8` for char (signed or unsigned)
- `Int16` for short (signed or unsigned)
- `Int` for int (signed or unsigned)
- `Int64` for long (signed or unsigned)
- `Ptrofs` for size_t

where Ptrofs is isomorphic to the Int module (in 32-bit systems) and to the Int64 module (in 64-bit systems). You pronounce “Ptrofs” as “pointer offset” because it is frequently used to indicate the distance between two pointers into the same object.

The following definitions are used for shorthand:

- **Definition** int = Int.int.
- **Definition** int64 = Int64.int.
- **Definition** ptrofs = Ptrofs.int.
26 Values: \texttt{Vint, Vptr}

Definition block : Type := positive.

Inductive val: Type :=
| Vundef: val
| Vint: int \to val
| Vlong: int64 \to val
| Vfloat: float \to val
| Vsingle: float32 \to val
| Vptr: block \to \texttt{ptrofs} \to val.

\texttt{Vundef} is the *undefined* value—found, for example, in an uninitialized local variable.

\texttt{Vint}(i) is an integer value, where \(i \) is a CompCert 32-bit integer. These 32-bit integers can also represent short (16-bit) and char (8-bit) values.

\texttt{Vfloat}(f) is a 64-bit floating-point value. \texttt{Vsinge}(f) is a 32-bit floating-point value.

\texttt{Vptr} \(b \), \(z \) is a pointer value, where \(b \) is an abstract block number and \(z \) is an offset within that block. Different \texttt{malloc} operations, or different extern global variables, or stack-memory-resident local variables, will have different abstract block numbers. Pointer arithmetic must be done within the same abstract block, with \((\texttt{Vptr} b, z) + (\texttt{Vint} i) = \texttt{Vptr} b(z + i)\). Of course, the C-language + operator first multiplies \(i \) by the size of the array-element that \(\texttt{Vptr} b, z \) points to.

\texttt{Vundef} is not always treated as distinct from a defined value. For example, \(p \mapsto \texttt{Vint} 5 \mapsto p \mapsto \texttt{Vundef} \), where \(\mapsto \) is the data-at operator (Chapter 31). That is, \(p \mapsto \texttt{Vundef} \) really means \(\exists v, p \mapsto v \). \texttt{Vundef} could mean “truly uninitialized” or it could mean “initialized but arbitrary.”
27 C types

CompCert C describes C’s type system with inductive data types.

Inductive signedness := Signed | Unsigned.
Inductive intsize := I8 | I16 | I32 | IBool.
Inductive floatsize := F32 | F64.

Record attr : Type := mk_attr {
 attr_volatile: bool; attr_alignas: option N
}
Definition noattr := {| attr_volatile := false; attr_alignas := None |}.

Inductive type : Type :=
 | Tvoid: type
 | Tint: intsize → signedness → attr → type
 | Tlong: signedness → attr → type
 | Tfloat: floatsize → attr → type
 | Tpointer: type → attr → type
 | Tarray: type → Z → attr → type
 | Tfunction: typelist → type → calling_convention → type
 | Tstruct: ident → attr → type
 | Tunion: ident → attr → type

with typelist : Type :=
 | Tnil: typelist
 | Tcons: type → typelist → typelist.

We have abbreviations for commonly used types:

Definition tint = Tint I32 Signed noattr.
Definition tuint = Tint I32 Unsigned noattr.
Definition tschar = Tint I8 Signed noattr.
Definition tuchar = Tint I8 Unsigned noattr.
Definition tarray (t: type) (n: Z) = Tarray t n noattr.
Definition tptr (t: type) := Tpointer t noattr.
The C language has a namespace for struct- and union-identifiers, that is, *composite types*. In this example, struct foo \{int value; struct foo *tail\} a,b; the “global variables” namespace contains a,b, and the “struct and union” namespace contains foo.

When you use CompCert clightgen to parse myprogram.c into myprogram.v, the main definition it produces is prog, the AST of the entire C program:

```
Definition prog : Clight.program := {| prog_types := composites; ... |}.
```

To interpret the meaning of a type expression, we need to look up the names of its struct identifiers in a *composite* environment. This environment, along with various well-formedness theorems about it, is built from prog as follows:

```
Require Import VST.floyd.proofauto. (* Import Verifiable C library *)
Require Import myprogram. (* AST of my program *)
```

The `make_compspecs` tactic automatically constructs the *composite specifications* from the program. As a typeclass Instance, CompSpecs is supplied automatically as an implicit argument to the functions and predicates that interpret the meaning of types:

```
Definition sizeof \{env: composite_env\} (t: type) : Z := ... 
Definition data_at_ \{cs: compspecs\} (sh: share) (t: type) (v: val) := ...
```

\(\text{sizeof } (\text{Tint I32 Signed noattr}) = 4. \)
\(\text{sizeof } (\text{Tint I32 Signed noattr}) = 4. \)
\(\text{sizeof } (\text{Tstruct .foo noattr}) = 8. \)
\(\text{data_at_ CompSpecs sh t v } \vdash \text{data_at_ sh t v} \)

When you have two separately compiled .c files, each will have its own prog and its own compspecs. See Chapter 70.
For each C-language data type, we define a *representation type*, the Type of Coq values that represent the contents of a C variable of that type.

Definition retype \{ cs: compspecs \} (t: type) : Type :=

Lemma retype_ind: \(\forall (t: \text{type}), \)
retype \(t = \)

```coq
match t with 
| Tvoid \Rightarrow unit 
| Tint _ _ \Rightarrow val 
| Tlong _ _ \Rightarrow val 
| Tfloat _ _ \Rightarrow val 
| Tpointer _ _ \Rightarrow val 
| Tarray t0 _ _ \Rightarrow \text{list (reptype t0)} 
| Tfunction _ _ _ \Rightarrow unit 
| Tstruct id _ \Rightarrow \text{reptype-structlist (co-members (get_co id))} 
| Tunion id _ \Rightarrow \text{reptype-unionlist (co-members (get_co id))} 
end
```

reptype-structlist is the right-associative cartesian product of all the (reptypes of) the fields of the struct. For example,

```coq
struct list \{ \text{int hd; struct list } *\text{tl}; \};
struct one \{ \text{struct list } *\text{p}; \};
struct three \{ \text{int a; struct list } *\text{p; double x;} \};
```

\[
\text{reptype (Tstruct_list noattr) = (val*val)} \\
\text{reptype (Tstruct_one noattr) = val} \\
\text{reptype (Tstruct_three noattr) = (val*(val*val))}
\]

We use \text{val} instead of \text{int} for the retype of an integer variable, because the variable might be uninitialized, in which case its value will be \text{Vundef}.
30 Uninitialized data, default_val

CompCert represents uninitialized atomic (integer, pointer, float) values as $\text{Vundef} : \text{val}$.

The dependently typed function default_val calculates the undefined value for any C type:

$\text{default_val} : \forall \{cs: \text{comspecs}\} (t: \text{type}), \text{reptype} t.$

For any C type t, the default value for variables of type t will have Coq type ($\text{reptype} t$).

For example:

```c
struct list {int hd; struct list *tl;};

\text{default_val tint} = \text{Vundef}
\text{default_val (tptr tint)} = \text{Vundef}
\text{default_val (tarray tint 4)} = [\text{Vundef}; \text{Vundef}; \text{Vundef}; \text{Vundef}]
\text{default_val (tarray t n)} = \text{list_repeat (Z.to_nat n) (default_val t)}
\text{default_val (Tstruct_list noattr)} = (\text{Vundef}, \text{Vundef})
```
31 data_at

Consider a C program with these declarations:

```c
struct list {int hd; struct list *tl;} L;
int f(struct list a[5], struct list *p) { ... }
```

Assume these definitions in Coq:

```coq
Definition t_list := Tstruct _list noattr.
Definition t_arr := Tarray t_list 5 noattr.
```

Somewhere inside `f`, we might have the assertion,

```
PROP() LOCAL(temp _a a, temp _p p, gvar _L L)
SEP(data_at Ews t_list (Vint (Int.repr 0), nullval) L;
   data_at π t_arr (list_repeat (Z.to_nat 5) (Vint (Int.repr 1), p)) a;
   data_at π t_list (default_val t_list) p)
```

This assertion says, “Local variable _a contains address a, _p contains address p, global variable _L is at address L. There is a struct list at L with permission-share Ews ("extern writable share"), whose hd field contains 0 and whose tl contains a null pointer. At address a there is an array of 5 list structs, each with hd=1 and tl=p, with permission π; and at address p there is a single list cell that is uninitialized\(^1\), with permission π.”

In pencil-and-paper separation logic, we write \(q \mapsto i\) to mean `data_at Tsh tint (Vint (Int.repr i)) q`. We write \(L \mapsto (0,\text{NULL})\) to mean `data_at Tsh t_list (Vint (Int.repr 0), nullval) L`. We write \(p \mapsto (_{-},_{-})\) to mean `data_at π t_list (default_val t_list) p`.

In fact, the definition `data_at_` is useful for the situation \(p \mapsto _{-}\):

```coq
Definition data_at_ {cs: compspecs} sh t p := data_at sh t (default_val t) p.
```

\(^1\)Uninitialized, or initialized but we don’t know or don’t care what its value is
32 field_at

Consider the example in progs/nest2.c

```
struct a {double x1; int x2;};
struct b {int y1; struct a y2;};
struct b p;
```

The command \(i = p.y2.x2; \) does a nested field load. We call \(y2.x2 \) the field path. The precondition for this command might include the assertion,

\[
\text{LOCAL}(gvar _pb \ pb) \quad \text{SEP}(\text{data_at } sh \ t_\text{struct_b } (u,(v,w)) \ pb)
\]

The postcondition (after the load) would include the new LOCAL fact, temp \(_i \ w \).

The tactic \(\text{(unfold_data_at } 1\%\text{nat) changes the SEP part of the assertion as follows:} \)

\[
\text{SEP}(\text{field_at } Ews \ t_\text{struct_b } (\text{DOT } y1) (\text{Vint } u) \ pb;
\quad \text{field_at } Ews \ t_\text{struct_b } (\text{DOT } y2) (\text{Vfloat } v, \text{Vint } w) \ pb)
\]

and then doing \(\text{(unfold_field_at } 2\%\text{nat) unfolds the second field_at,} \)

\[
\text{SEP}(\text{field_at } Ews \ t_\text{struct_b } (\text{DOT } y1) (\text{Vint } u) \ pb;
\quad \text{field_at } Ews \ t_\text{struct_b } (\text{DOT } y2 \text{ DOT } x1) (\text{Vfloat } v) \ pb;
\quad \text{field_at } Ews \ t_\text{struct_b } (\text{DOT } y2 \text{ DOT } x2) (\text{Vint } w) \ pb)
\]

The third argument of field_at represents the path of structure-fields that leads to a given substructure. The empty path \((\text{nil}) \) works too; it “leads” to the entire structure. In fact, data_at \(\pi \tau v p \) is just short for field_at \(\pi \tau \text{ nil } v \ p \).

Arrays and structs may be nested together, in which case the field path may also contain array subscripts at the appropriate places, using the notation SUB \(i \) along with DOT field.
This chapter is advanced material, describing a feature that is sometimes convenient but never necessary. You can skip this chapter.

The `reptype` function maps C types to the corresponding Coq types of (possibly uninitialized) values. When we know a variable is definitely initialized, it may be more natural to use `int` instead of `val` for integer variables, and `float` instead of `val` for double variables. The `reptype'` function maps C types to the Coq types of (definitely initialized) values.

Definition `reptype'` `{cs: compspecs} (t: type) : Type :=

Lemma `reptype'_ind`: ∀ (t: type),

\[
\text{reptype } t = \\
\text{match } t \text{ with } \\
| \text{Tvoid } \Rightarrow \text{unit} \\
| \text{Tint } _ _ \Rightarrow \text{int} \\
| \text{Tlong } _ _ \Rightarrow \text{Int64.int} \\
| \text{Tfloat } _ _ \Rightarrow \text{float} \\
| \text{Tpointer } _ _ \Rightarrow \text{pointer_val} \\
| \text{Tarray } t0 _ _ \Rightarrow \text{list (reptype' } t0) \\
| \text{Tfunction } _ _ \Rightarrow \text{unit} \\
| \text{Tstruct id } _ \Rightarrow \text{reptype'_structlist (co_members (get_co id))} \\
| \text{Tunion id } _ \Rightarrow \text{reptype'_unionlist (co_members (get_co id))} \\
\text{end}
\]

The function `repinj` maps an initialized value to the type of possibly uninitialized values:

Definition `repinj` `{cs: compspecs} (t: type) : reptype' t → reptype t := ...
The program progs/nest2.c (verified in progs/verif_nest2.v) illustrates the use of reptype’ and repinj.

struct a {double x1; int x2;};
struct b {int y1; struct a y2;} p;

int get(void) { int i; i = p.y2.x2; return i; }
void set(int i) { p.y2.x2 = i; }

Our API spec for get reads as,

Definition get_spec :=
 DECLARE _get
 WITH v : reptype’ t_struct_b, p : val
 PRE []
 PROP() LOCAL(gvar _p p)
 SEP(data-at Ews t_struct_b (repinj _ v) p)
 POST [tint]
 PROP() LOCAL(temp ret_temp (Vint (snd (snd v))))
 SEP(data-at Ews t_struct_b (repinj _ v) p).

In this program, reptype’ t_struct_b = (int*(float*int)), and repinj t_struct_b (i,(x,j)) = (Vint i, (Vfloat x, Vint j)).

One could also have specified get without reptype’ at all:

Definition get_spec :=
 DECLARE _get
 WITH i: Z, x: float, j: int, p : val
 PRE []
 PROP() LOCAL(gvar _p p)
 SEP(data_at Ews t_struct_b (Vint (Int.repr i), (Vfloat x, Vint j)) p)
 POST [tint]
 PROP() LOCAL(temp ret_temp (Vint j))
 SEP(data_at Ews t_struct_b (Vint (Int.repr i), (Vfloat x, Vint j)) p).
34 LOCAL defs: temp, lvar, gvar

The LOCAL part of a PROP()LOCAL()SEP() assertion is a list of localdefs that bind variables to their values or addresses.

Inductive localdef : Type :=
| temp: ident → val → localdef
| lvar: ident → type → val → localdef
| gvar: ident → val → localdef
| sgvar: ident → val → localdef
| localprop: Prop → localdef.

temp i v binds a nonaddressable local variable i to its value v.
lvar i t v binds an *addressable* local variable i (of type t) to its *address* v.
gvar i v binds a *visible global* variable i to its *address* v.
sgvar i v binds a *possibly shadowed global* variable i to its *address* v.

The *contents* of an addressable (local or global) variable is on the heap, and can be described in the SEP clause.

```c
int g=2;
int f(void) { int g; int *p = &g; g=6; return g; }
```

In this program, the global variable g is shadowed by the local variable g. In an assertion inside the function body, one could write

```c
PROP() LOCAL(temp _p q; lvar _g tint q; sgvar _g p)}
SEP(data_at Ews tint (Vint (Int.repr 2)) p;
    data_at Tsh tint (Vint (Int.repr 6)) q)
```

to describe a shadowed global variable _g that is still there in memory but (temporarily) cannot be referred to by its name in the C program.
35 go_lower

Normally one does not use this tactic directly, it is invoked as the first step of entailer or entailer!

Given a lifted entailment \(\text{ENTAIL} \Delta, \text{PROP}(\vec{P}) \text{ LOCAL}(\vec{Q}) \text{ SEP}(\vec{R}) \vdash S \), one often wants to prove it at the base level: that is, with all of \(\vec{P} \) moved above the line, with all of \(\vec{Q} \) out of the way, just considering the base-level separation-logic conjuncts \(\vec{R} \).

When \(\Delta, \vec{P}, \vec{Q}, \vec{R} \) are concrete, the go_lower tactic does this. Concrete means that the \(\vec{P}, \vec{Q} \) are nil-terminated lists (not Coq variables) that every element of \(\vec{Q} \) is manifestly a localdef (not hidden in Coq abstractions), the identifiers in \(\vec{Q} \) are (computable to) ground terms, and the analogous (tree) property for \(\Delta \). It is not necessary that \(\Delta, \vec{P}, \vec{Q}, \vec{R} \) be fully ground terms: Coq variables (and other Coq abstractions) can appear anywhere in \(\vec{P} \) and \(\vec{R} \) and in the value parts of \(\Delta \) and \(\vec{Q} \). When the entailment is not fully concrete, or when there existential quantifiers outside PROP, the tactic old_go_lower can still be useful.

go_lower moves the propositions \(\vec{P} \) above the line; when a proposition is an equality on a Coq variable, it substitutes the variable.

For each localdef in \(\vec{Q} \) (such as temp \(i \ v \)), go_lower looks up \(i \) in \(\Delta \) to derive a type-checking fact (such as \text{tc_val} \(t \ v \)), then introduces it above the line and simplifies it. For example, if \(t \) is tptr tint, then the typechecking fact simplifies to \text{is_pointer_or_null} \(v \).

Then it proves the localdefs in \(S \), if possible. If there are still some local-environment dependencies remaining in \(S \), it introduces a variable rho to stand for the run-time environment.

The remaining goal will be of the form \(\vec{R} \vdash S' \), with the semicolons in \(\vec{R} \) replaced by the separating conjunction \(* \). \(S' \) is the residue of \(S \) after lowering to the base separation logic and deleting its (provable) localdefs.
Normally one does not use this tactic directly, it is invoked by
entailer or entailer!

To prove an entailment $R_1 \ast R_2 \ast \ldots \ast R_n \vdash !!(P_1' \land \ldots P_n') \& R_1' \ast \ldots \ast R_m'$,
first extract all the local (nonspatial) facts from $R_1 \ast R_2 \ast \ldots \ast R_n$, use them
(along with other propositions above the line) to prove $P_1' \land \ldots P_n'$, and then
work on the separation-logic (spatial) conjuncts $R_1' \ast \ldots \ast R_n \vdash R_1' \ast \ldots \ast R_m'$.

An example local fact: data at Ews (tarray tint n) v p $\vdash !!(Z\text{length } v = n)$. That is, the value v in an array “fits” the length of the array.

The Hint database saturate_local contains all the local facts that can be extracted from individual spatial conjuncts:

field_at_local_facts:
field_at $\pi t path$ v p $\vdash !!(\text{field-compatible } t path p$
$\land \text{value-fits } (\text{nested-field-type } t path) v)$
data_at $\pi t v p$ $\vdash !!(\text{field-compatible } t \text{nil } p \land \text{value-fits } t v)$

memory_block_local_facts:
memory_block $\pi n p$ $\vdash !! \text{isptr } p$

The assertion $(Z\text{length } v = n)$ is actually a consequence of value_fits when t is an array type. See Chapter 38.

If you create user-defined spatial terms (perhaps using EX, data_at, etc.),
you can add hints to the saturate_local database as well.

The tactic saturate_local takes a proof goal of the form $R_1 \ast R_2 \ast \ldots \ast R_n \vdash S$
and adds saturate-local facts for each of the R_i, though it avoids adding
duplicate hypotheses above the line.
CompCert C light comes with an “address calculus.” Consider this example:

```c
struct a {double x1; int x2;};
struct b {int y1; struct a y2;};
struct a *pa; int *q = &(pa→y2.x2);
```

Suppose the value of _pa is _p. Then the value of _q is _p + δ; how can we reason about δ?

Given type _t such as Tstruct _.b noattr, and path such as (DOT _y2 DOT _x2), then (nested_field_type _t path) is the type of the field accessed by that path, in this case _tint; (nested_field_offset _t path) is the distance (in bytes) from the base of _t to the address of the field, in this case (on a 32-bit machine) 12 or 16, depending on the field-alignment conventions of the target machine (and the compiler).

On the Intel x86 architecture, where doubles need not be 8-byte-aligned, we have,

```
data_at π t_struct_b (i,(f,j)) p ⊢
    data_at π tint i p * data_at π t_struct_a (f,j) (offset_val p 12)
```

but the converse is not valid:

```
data_at π tint i p * data_at π t_struct_a (f,j) (offset_val p 12)
    ∅ data_at π t_struct_b (i,(f,j)) p
```

The reasons: we don’t know that _p + 12 satisfies the alignment requirements for struct _b; we don’t know whether _p + 12 crosses the end-of-memory boundary. That entailment *would* be valid in the presence of this hypothesis: field_compatible t_struct_b nil _p : Prop.

which says that an entire struct _b value can fit at address _p. Note that
this is a nonspatial assertion about addresses, independent of the contents of memory.

In order to assist with reasoning about reassembly of data structures, saturate_local (and therefore entailer) puts field_compatible assertions above the line; see Chapter 36.

Sometimes one needs to name the address of an internal field—for example, to pass just that field to a function. In that case, one could use field_offset, but it is better to use field_address:

\[
\textbf{Definition} \quad \text{field_address} (t: \text{type}) (path: \text{list gfield}) (p: \text{val}) : \text{val} := \\
\begin{align*}
& \text{if field_compatible_dec } t \text{ path } p \\
& \quad \text{then offset_val } (\text{Int.repr } (\text{nested_field_offset } t \text{ path})) \ p \\
& \quad \text{else Vndef}
\end{align*}
\]

That is, field_address has “baked in” the fact that the offset is “compatible” with the base address (is aligned, has not crossed the end-of-memory boundary). Therefore we get a valid converse for the example above:

\[
data_{\text{at}} \pi \ t_{\text{int}} i \ p \\
\ast \ data_{\text{at}} \pi \ t_{\text{struct-a}} (f, j) \ (\text{field_address } t_{\text{struct-b}} (\text{DOT } y2 \text{ DOT } x2) \ p) \\
\vdash \ data_{\text{at}} \pi \ t_{\text{struct-b}} (i, (f, j)) \ p
\]

FIELD_ADDRESS VS FIELD_ADDRESS0. You use field_address t path p to indicate that p points to at least one thing of the appropriate field type for t.path, that is, the type nested_field_type t path.

Sometimes when dealing with arrays, you want a pointer that might possibly point just one past the end of the array; that is, points to at least zero things. In this case, use field_address0 t path p, which is built from field_compatible0. It has slightly looser requirements for how close p can be to the end of memory.
The spatial maps-to assertion, data_at \(\pi t v p \), says that there’s a value \(v \) in memory at address \(p \), filling the data structure whose C type is \(t \) (with permission \(\pi \)). A corollary is value_fits \(t v \): \(v \) is a value that actually can reside in such a C data structure.

Value_fits is a recursive, dependently typed relation that is easier described by its induction relation; here, we present a simplified version that assumes that all types \(t \) are not volatile:

\[
\text{value_fits } t \ v = \text{tc_val'} t \ v \quad (\text{when } t \text{ is an integer, float, or pointer type}) \\
\text{value_fits } (\text{tarray } t' n) \ v = (Z\text{length } v = Z.\text{max } 0 \ n) \land \forall \ (\text{value_fits } t') \ v \\
\text{value_fits } (\text{Tstruct } i \ \text{noattr}) \ (v_1,(v_2,(\ldots,v_n))) = \\
\text{value_fits } (\text{field_type } f_1 \ v_1) \land \ldots \land \text{value_fits } (\text{field_type } f_n \ v_n) \\
(\text{when the fields of struct } i \text{ are } f_1,\ldots,f_n)
\]

The predicate \(\text{tc_val'} \) says,

Definition \(\text{tc_val'} (t: \text{type}) (v: \text{val}) := v \neq \text{Vundef} \rightarrow \text{tc_val } t \ v. \)

Definition \(\text{tc_val } (t: \text{type}) : \text{val} \rightarrow \text{Prop} := \)

\[
\text{match } t \ \text{with} \\
| \text{Tvoid} \Rightarrow \text{False} \\
| \text{Tint } sz \ sg \ _ \Rightarrow \text{is_int } sz \ sg \\
| \text{Tlong} \ _ \Rightarrow \text{is_long} \\
| \text{Tfloat } F32 \ _ \Rightarrow \text{is_single} \\
| \text{Tfloat } F64 \ _ \Rightarrow \text{is_float} \\
| \text{Tpointer} \ _ \mid \text{Tarray} \ _ \mid \text{Tfunction} \ _ \Rightarrow \text{is_pointer_or_null} \\
| \text{Tstruct} \ _ \mid \text{Tunion} \ _ \Rightarrow \text{isptr}
\end{align*}

end

So, an atomic value (int, float, pointer) fits *either* when it is \text{Vundef} or when it type-checks. We permit \text{Vundef} to “fit,” in order to accommodate partially initialized data structures in C.
Since τ is usually concrete, $\text{tc_val} \ \tau \ \nu$ immediately unfolds to something like,

TC0: is_int I32 Signed (Vint i)
TC1: is_int I8 Unsigned (Vint c)
TC2: is_int I8 Signed (Vint d)
TC3: is_pointer_or_null p
TC4: isptr q

TC0 says that i is a 32-bit signed integer; this is a tautology, so it will be automatically deleted by go_lower.

TC1 says that c is a 32-bit signed integer whose value is in the range of unsigned 8-bit integers (unsigned char). TC2 says that d is a 32-bit signed integer whose value is in the range of signed 8-bit integers (signed char). These hypotheses simplify to,

TC1: $0 \leq \text{Int}.\text{unsigned} \ c \leq \text{Byte}.\text{max}_\text{unsigned}$
TC2: $\text{Byte}.\text{min}_\text{signed} \leq \text{Int}.\text{signed} \ c \leq \text{Byte}.\text{max}_\text{signed}$
The cancel tactic proves associative-commutative rearrangement goals such as \((A_1 \ast A_2) \ast ((A_3 \ast A_4) \ast A_5) \vdash A_4 \ast (A_5 \ast A_1) \ast (A_3 \ast A_2)\).

If the goal has the form \((A_1 \ast A_2) \ast ((A_3 \ast A_4) \ast A_5) \vdash (A_4 \ast B_1 \ast A_1) \ast B_2\) where there is only a partial match, then cancel will remove the matching conjuncts and leave a subgoal such as \(A_2 \ast A_3 \ast A_5 \vdash B_1 \ast B_2\).

cancel solves \((A_1 \ast A_2) \ast ((A_3 \ast A_4) \ast A_5) \vdash A_4 \ast \text{TT} \ast A_1\) by absorbing \(A_2 \ast A_3 \ast A_5\) into \(\text{TT}\). If the goal has the form

\[
F := \text{?224 : list(environ → mpred)}
\]

\[
(A_1 \ast A_2) \ast ((A_3 \ast A_4) \ast A_5) \vdash A_4 \ast (\text{fold_right sepcon emp F}) \ast A_1
\]

where \(F\) is a frame that is an abbreviation for an uninstantiated logical variable of type list(environ→mpred), then the cancel tactic will perform frame inference: it will unfold the definition of \(F\), instantiate the variable (in this case, to \(A_2 :: A_3 :: A_5 :: \text{nil}\)), and solve the goal. The frame may have been created by \(\text{evar}(F: \text{list(environ→mpred)})\), as part of forward symbolic execution through a function call.

WARNING: cancel can turn a provable entailment into an unprovable entailment. Consider this:

\[
A \ast C \vdash B \ast C
\]

\[
A \ast D \ast C \vdash C \ast B \ast D
\]

This goal is provable by first rearranging to \((A \ast C) \ast D \vdash (B \ast C) \ast D\). But cancel may aggressively cancel \(C\) and \(D\), leaving \(A \vdash B\), which is not provable. You might wonder, what kind of crazy hypothesis is \(A \ast C \vdash B \ast C\); but indeed such “context-dependent” cancellations do occur in the theory of linked lists; see PLCC Chapter 19.

Cancel does not use \(\beta\eta\) equality, as that could be slow in some cases. That means sometimes cancel leaves a residual subgoal \(A \vdash A'\) where \(A =_{\beta} A'\); sometimes the only differences are in (invisible) implicit arguments. You can apply \(\text{derives_refl}\) to solve such residual goals.
40 entailer!

The entailer and entailer! tactics simplify (or solve entirely) entailments in either the lifted or base-level separation logic. The entailer never turns a provable entailment into an unprovable one; entailer! is more aggressive and more efficient, but sometimes (rarely) turns a provable entailment into an unprovable one. We recommend trying entailer! first.

When go_lower is applicable, the entailers start by applying it (see Chapter 35).

Then: saturate_local (see Chapter 36).

Next: on each side of the entailment, gather the propositions to the left: $R_1 \ast (!!P_1 & & (!!P_2 & & R_2))$ becomes $!!(P_1 \land P_2) & & (R_1 \ast R_2)$.

Move all left-hand-side propositions above the line; substitute variables. Autorewrite with entailer_rewrite, a modest hint database. If the r.h.s. or its first conjunct is a “valid_pointer” goal (or one of its variants), try to solve it.

At this point, entailer tries normalize and (if progress) back to Next; entailer! applies cancel to the spatial terms and prove_it_now to each propositional conjunct.

The result is that either the goal is entirely solved, or a residual entailment or proposition is left for the user to prove.
The normalize tactic performs autorewrite with norm and several other transformations. Normalize can be slow: use Intros and entailer if they can do the job.

The norm rewrite-hint database uses several sets of rules.

Generic separation-logic simplifications.

\[
\begin{align*}
P \ast \text{emp} &= P \\
\text{emp} \ast P &= P \\
P \&\& \text{TT} &= P \\
\text{TT} \&\& P &= P \\
P \&\& \text{FF} &= \text{FF} \\
\text{FF} \&\& P &= \text{FF} \\
P \ast \text{FF} &= \text{FF} \\
\text{FF} \ast P &= \text{FF} \\
P \&\& P &= P \\
(\text{EX }_a : A, P) &= P \\
\text{local} \ '\text{True} &= \text{TT}
\end{align*}
\]

Pull EX and !! out of \(*\)-conjunctions.

\[
\begin{align*}
(\text{EX } x : A, P) \ast Q &= \text{EX } x : A, P \ast Q \\
(\text{EX } x : A, P) \&\& Q &= \text{EX } x : A, P \&\& Q \\
P \ast (\text{EX } x : A, Q) &= \text{EX } x : A, P \ast Q \\
P \&\& (\text{EX } x : A, Q) &= \text{EX } x : A, P \&\& Q \\
P \ast (!!Q \&\& R) &= !!Q \&\& (P \ast R) \\
(!!Q \&\& P) \ast R &= !!Q \&\& (P \ast R)
\end{align*}
\]

Delete auto-provable propositions.

\[
\begin{align*}
P &\rightarrow (!!P \&\& Q = Q) \\
P &\rightarrow (!!P = \text{TT})
\end{align*}
\]

Integer arithmetic.

\[
\begin{align*}
n + 0 &= n \\
0 + n &= n \\
n \ast 1 &= n \\
1 \ast n &= n \\
\text{sizeof } \text{tuchar} &= 1 \\
\text{align } n &= n \\
(z > 0) \rightarrow (\text{align } 0, z = 0) \\
(z \geq 0) \rightarrow (\text{Z.max } 0, z = z)
\end{align*}
\]
Int32 arithmetic.

\[
\begin{align*}
\text{Int.sub } x y &= \text{Int.zero} & \text{Int.sub } x \text{Int.zero } &= x \\
\text{Int.add } x (\text{Int.neg } x) &= \text{Int.zero} & \text{Int.add } x \text{Int.zero } &= x \\
\text{Int.add } \text{Int.zero } x &= x \\
x \neq y \rightarrow \text{offset_val(overflow } v i \text{) } j &= \text{offset_val } v (\text{Int.add } i j) \\
\text{Int.add(Int.repr } i)(\text{Int.repr } j) &= \text{Int.repr}(i + j) \\
\text{Int.add(Int.add } z (\text{Int.repr } i))(\text{Int.repr } j) &= \text{Int.add } z (\text{Int.repr}(i + j)) \\
z > 0 \rightarrow (\text{align } 0 \ z &= 0) & \text{force_int(Vint } i) &= i \\
(\text{min_signed } \leq z \leq \text{max_signed}) \rightarrow \text{Int.signed(Int.repr } z) &= z \\
(0 \leq z \leq \text{max_unsigned}) \rightarrow \text{Int.unsigned(Int.repr } z) &= z \\
(\text{Int.unsigned } i < 2^n) \rightarrow \text{Int.zero_ext } n \ i &= i \\
(-2^{n-1} \leq \text{Int.signed } i < 2^{n-1}) \rightarrow \text{Int.sign_ext } n \ i &= i \\
\end{align*}
\]

map, fst, snd, ...

\[
\begin{align*}
\text{map } f (x :: y) &= f x :: \text{map } f \ y & \text{map } \text{nil } &= \text{nil} & \text{fst}(x, y) &= x \\
\text{snd}(x, y) &= y & (\text{isptr } v) \rightarrow \text{force_ptr } v &= v & \text{isptr (force_ptr } v) &= \text{isptr } v \\
&(\text{is_pointer_or_null } v) \rightarrow \text{ptr_eq } v v &= \text{True} \\
\end{align*}
\]

Unlifting.

\[
\begin{align*}
'f \rho &= f & \text{[when } f \text{ has arity 0]} \\
'f a_1 \rho &= f (a_1 \rho) & \text{[when } f \text{ has arity 1]} \\
'f a_1 a_2 \rho &= f (a_1 \rho)(a_2 \rho) & \text{[when } f \text{ has arity 2, etc.]} \\
(P \ast Q)\rho &= P \rho \ast Q \rho \\
(P \&\& Q)\rho &= P \rho \&\& Q \rho & (!!P)\rho &= !!P & (!!(P \land Q)) &= !!P \&\& !!Q \\
(\text{EX } x : A, P x)\rho &= \text{EX } x : A, P x \rho & '('(\text{EX } x : B, P x)\rho &= \text{EX } x : B, 'P x)) \\
(P \ast Q) &= 'P \ast 'Q & (P \&\& Q) &= 'P \&\& 'Q \\
\end{align*}
\]
Type checking and miscellaneous.

\[tc_{\text{andp}} \, tc_{\text{TT}} \, e \, = \, e \quad tc_{\text{andp}} \, e \, tc_{\text{TT}} \, = \, e \]

\[\text{eval}_id \, x \,(\text{env}_\text{set} \, \rho \, x \, v) \, = \, v \]

\[x \neq y \rightarrow (\text{eval}_id \, x \, (\text{env}_\text{set} \, \rho \, y \, v) \, = \, \text{eval}_id \, x \, v) \]

\[\text{isptr} \, v \rightarrow (\text{eval}_\text{cast}_{\text{neutral}} \, v \, = \, v) \]

\[(\exists t. \, tc_{\text{val}} \, t \, v \, \land \text{is_pointer_type} \, t) \rightarrow (\text{eval}_\text{cast}_{\text{neutral}} \, v \, = \, v) \]

Expression evaluation. (autorewrite with eval, but in fact these are usually handled just by simpl or unfold.)

\[\text{deref_noload} (\text{tarray} \, t \, n) \, = \, (\text{fun} \, v \Rightarrow \, v) \quad \text{eval}_expr (\text{Etempvar} \, i \, t) \, = \, \text{eval}_id \, i \]

\[\text{eval}_expr (\text{Econst_int} \, i \, t) \, = \, \text{'(Vint} \, i) \]

\[\text{eval}_expr (\text{Ebinop} \, op \, a \, b \, t) \, = \]

\[\text{'(eval_binop} \, op \, (\text{typeof} \, a) \, (\text{typeof} \, b)) \, (\text{eval}_expr \, a) \, (\text{eval}_expr \, b) \]

\[\text{eval}_expr (\text{Eunop} \, op \, a \, t) \, = \, \text{'(eval_unop} \, op \, (\text{typeof} \, a)) \, (\text{eval}_expr \, a) \]

\[\text{eval}_expr (\text{Ecast} \, e \, t) \, = \, \text{'(eval_cast\,(typeof} \, e) \, t) \, (\text{eval}_expr \, e) \]

\[\text{eval_lvalue}(\text{Ederef} \, e \, t) \, = \, \text{'force_ptr} \, (\text{eval}_expr \, e) \]

Function return values.

\[\text{get_result}(\text{Some} \, x) \, = \, \text{get_result1}(x) \quad \text{retval}(\text{get_result1} \, i \, \rho) \, = \, \text{eval}_id \, i \, \rho \]

\[\text{retval}(\text{env}_\text{set} \, \rho \, \text{ret_temp} \, v) \, = \, v \]

\[\text{retval}(\text{make_args}(\text{ret_temp} :: \text{nil}) \, (v :: \text{nil}) \, \rho) \, = \, v \]

\[\text{ret_type}(\text{initialized} \, i \, \Delta) \, = \, \text{ret_type}(\Delta) \]
Postconditions. (autorewrite with ret_assert.)

\[
\begin{align*}
\text{normal_ret_assert } FF \ ek \ vl & = FF \\
\text{frame_ret_assert(normal_ret_assert } P) \ Q & = \text{normal_ret_assert } (P * Q) \\
\text{frame_ret_assert } P \ \text{emp} & = P \\
\text{frame_ret_assert } P \ Q \ \text{EK_return } vl & = P \ \text{EK_return } vl * Q \\
\text{frame_ret_assert(loop1_ret_assert } P \ Q) \ R & = \\
\text{loop1_ret_assert } (P * R)(\text{frame_ret_assert } Q \ R) \\
\text{frame_ret_assert(loop2_ret_assert } P \ Q) \ R & = \\
\text{loop2_ret_assert } (P * R)(\text{frame_ret_assert } Q \ R) \\
\text{overridePost } P \ (\text{normal_ret_assert } Q) & = \text{normal_ret_assert } P \\
\text{normal_ret_assert } P \ ek \ vl & = (((ek = \text{EK_normal}) && (((vl = \text{None}) && P))) \\
\text{loop1_ret_assert } P \ Q \ \text{EK_normal } \text{None} & = P \\
\text{overridePost } P \ R \ \text{EK_normal } \text{None} & = P \\
\text{overridePost } P \ R \ \text{EK_return} & = R \ \text{EK_return}
\end{align*}
\]

In addition to rewriting, normalize applies the following lemmas:

\[
\begin{align*}
P & \vdash TT \\
FF & \vdash P \\
P & \vdash P * TT \\
(\forall x. (P \vdash Q)) & \to (\text{EX } x : A, \ P \vdash Q) \\
(P \to (TT \vdash Q)) & \to (!!P \vdash Q) \\
(P \to (Q \vdash R)) & \to (!!P && Q \vdash R)
\end{align*}
\]

and does some rewriting and substitution when \(P \) is an equality in the goal, \((P \to (Q \vdash R)) \).

Given the goal \(x \to P \), where \(x \) is not a Prop, normalize avoids doing an intro. This allows the user to choose an appropriate name for \(x \).
Consider the proof state of verif_sumarray.v, just after (* Prove postcondition of loop body implies loop invariant. *). We have,

\[H : 0 \leq i \leq \text{size} \]

\[
\text{semax Delta}
\]
\[
\quad \text{(PROP () LOCAL(…)}
\]
\[
\quad \text{SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))}
\]
\[
\quad x = x[i]; \ldots
\]
\[
\text{POSTCONDITION}
\]

We desire, above the line, \(\text{Zlength contents} = \text{size} \). This is not provable from anything above the line. But it is provable from the precondition (PROP/LOCAL/SEP).

Whenever a pure proposition (Prop) is provable from the precondition, you can bring it above the line using `assert_PROP`.

For example, \(\text{assert_PROP}(\text{Zlength contents} = \text{size}) \) gives you an entailment proof goal:

\[H : 0 \leq i \leq \text{size} \]

\[
\text{ENTAIL Delta,}
\]
\[
\quad \text{(PROP () LOCAL(…)}
\]
\[
\quad \text{SEP(data_at sh (tarray tuint size) (map Vint (map Int.repr contents)) a))}
\]
\[
\quad \vdash !! (\text{Zlength contents} = \text{size}).
\]

Then, typically, you use `entailer` to prove the assertion. For example:

\[
\text{assert_PROP} (\text{Zlength contents} = \text{size}). \{
\quad \text{entailer!. do 2 rewrite Zlength_map. reflexivity.}
\}
\]
43 Welltypedness of variables

Verifiable C’s typechecker ensures this about C-program variables: if a variable is initialized, then it contains a value of its declared type.

Function parameters (accessed by Etempvar expressions) are always initialized. Nonaddressable local variables (accessed by Etempvar expressions) and address-taken local variables (accessed by Evar) may be uninitialized or initialized. Global variables (accessed by Evar) are always initialized.

The typechecker keeps track of the initialization status of local nonaddressable variables, conservatively: if on all paths from function entry to the current point—assuming that the conditions on if-expressions and while-expressions are uninterpreted/nondeterministic—there is an assignment to variable x, then x is known to be initialized.

Addressable local variables do not have initialization status tracked by the typechecker; instead, this is tracked in the separation logic, by data_at assertions such as $v \mapsto _$(uninitialized) or $v \mapsto i$(initialized).

Proofs using the forward tactic will typically generate proof obligations (for the user to solve) of the form,

$$\text{ENTAIL } \Delta, \text{PROP}(\vec{P}) \text{ LOCAL}(\vec{Q}) \text{ SEP}(\vec{R}) \vdash \text{PROP}(\vec{P'}) \text{ LOCAL}(\vec{Q'}) \text{ SEP}(\vec{R'})$$

Δ keeps track of which nonaddressable local variables are initialized; says that all references to local variables contain values of the right type; and says that all addressable locals and globals point to an appropriate block of memory.

Using go_lower or entailer on an ENTAIL goal causes a tc_val assertion to be placed above the line for each initialized tempvar. As explained at page 60, this tc_val may be simplified into an is_int hypothesis, or even removed if vacuous.
44 Shares

Operators such as data at take a permission share, expressing whether the assertion grants read permission, write permission, or some other fractional permission.

\[
\begin{align*}
Tsh &= \text{Share_top} \\
Lsh &= a \\
c &= b \\
Rsh &= Ews \\
\text{Share_bot} \\
\end{align*}
\]

The top share, written Tsh or Share_top, gives total permission: to deallocate any cells within the footprint of this mapsto, to read, to write.

\[
\begin{align*}
\text{Share_split} \ Tsh &= (Lsh, Rsh) \\
\text{Share_split} \ Lsh &= (a, a') \\
\text{Share_split} \ Rsh &= (b, b') \\
\forall sh. \ \text{writable_share} \ sh &= \text{readable_share} \ sh \\
\text{writable_share} \ Ews &= \text{readable_share} \ b \\
\text{writable_share} \ d &= \text{readable_share} \ c \\
\text{writable_share} \ Tsh &= \neg \text{readable_share} \ Lsh
\end{align*}
\]

Any share may be split into a left half and a right half. The left and right of the top share are given distinguished names Lsh, Rsh.

The right-half share of the top share (or any share containing it such as d) is sufficient to grant write permission to the data: “the right share is the write share.” A thread of execution holding only Lsh—or subshares of it such as a, a’—can neither read or write the object, but such shares are not completely useless: holding any nonempty share prevents other threads from deallocating the object.

Any subshare of Rsh, in fact any share that overlaps Rsh, grants read
permission to the object. Overlap can be tested using the glb (greatest lower bound) operator.

Whenever (data_at sh t w v) holds, then the share sh must include at least a read share, thus this gives permission to load memory at address v to get a value w of type t.

To make sure sh has enough permission to write (i.e., Rsh ⊂ sh, we can say writable_share sh : Prop.

To test whether a share sh is empty or nonempty, use sepalg.identity sh or sepalg.nonidentity sh.

Memory obtained from malloc comes with the top share Tsh. Writable extern global variables and stack-allocated addressable locals (which of course must not be deallocated) come with the “extern writable share” Ews which is equal to Rsh. Read-only globals come with a half-share of Rsh.

Sequential programs usually have little need of any shares except the Tsh and Ews. However, many function specifications can be parameterized over any share (example: sumarray_spec on page 14); that kind of generalized specification makes the functions usable in more contexts.

In C it is undefined to test deallocated pointers for equality or inequalities, so the Hoare-logic rule for pointer comparison also requires some permission-share; see page 72.
45 Pointer comparisons

In C, if \(p \) and \(q \) are expressions of type pointer-to-something, testing \(p = q \) or \(p \neq q \) is defined only if: \(p \) is NULL, or points within a currently allocated object, or points at the end of a currently allocated object; and similarly for \(q \). Testing \(p < q \) (etc.) has even stricter requirements: \(p \) and \(q \) must be pointers into the same allocated object.

Verifiable C enforces this by creating “type-checking” conditions for the evaluation of such pointer-comparison expressions. Before reasoning about the result of evaluating expression \(p == q \), you must first prove \(\text{tc_expr} \Delta (\text{Ebinop_Oeq (Etempvar_p (tptr tint)) (Etempvar_q (tptr tint)))} \), where \(\text{tc_expr} \) is the type-checking condition for that expression. This simplifies into an entailment with the current precondition on the left, and \(\text{denote_tc_comparable} \ p \ q \) on the right.

The entailer(!) has a solver for such proof goals. It uses the hint database valid_pointer. It relies on spatial terms on the l.h.s. of the entailment, such as \(\text{data_at} \ \pi \ t \ v \ p \) which guarantees that \(p \) points to something.

The file progs/verif_ptr_compare.v illustrates pointer comparisons.
46 Proof of the reverse program

Program Logics for Certified Compilers, Chapter 3 shows a program that reverses a linked list (destructively, in place), along with a proof of correctness. (Chapters 2 and 3 available free here.)

That proof is based on a general notion of list segments. Here we show a simpler proof that does not use segments, but see Chapter 47 for proof that corresponds to Chapters 3 and 27 of PLCC.

The C program is in progs/reverse.c:

```c
struct list {unsigned head; struct list *tail;};

struct list *reverse (struct list *p) {
    struct list *w, *t, *v;
    w = NULL;
    v = p;
    while (v) { t = v->tail; v->tail = w; w = v; v = t; }
    return w;
}
```

Please open your CoqIDE or Proof General to progs/verif_reverse2.v. As usual, in progs/verif_reverse2.v we import the clightgen-produced file reverse.v and then build CompSpecs and Vprog (see page 13, Chapter 28, Chapter 48).

For the struct list used in this program, we can define the notion of linked list \(x \overset{\sigma}{\Rightarrow} \text{nil} \) with a recursive definition:

```
Fixpoint listrep (sigma: list val) (x: val) : mpred :=
    match sigma with
    | h::hs ⇒ EX y:val, data_at Tsh tstruct_list (h,y) x * listrep hs y
    | nil ⇒ !! (x = nullval) && emp
    end.
```
That is, listrep $\sigma \ x$ describes a null-terminated linked list starting at pointer p, with permission-share T_{sh}, representing the sequence σ.

The API spec (see also Chapter 7) for reverse is,

Definition reverse_spec :=
DECLARE _reverse
WITH σ: list val, p: val
PRE $[-p \ OF \ (tptr \ t_{-}struct_list)]$
PROP() LOCAL(temp _p p)SEP (listrep $\sigma \ p$)
POST $[(tptr \ t_{-}struct_list)]$
EX q:val, PROP() LOCAL(temp _p q)SEP (listrep (rev σ) q).

The precondition says (for p the function parameter) $p \stackrel{\sigma}{\sim} \text{nil}$, and the postcondition says that (for q the return value) $q \stackrel{\text{rev } \sigma}{\sim} \text{nil}$.

In your IDE, enter the Lemma body_reverse and move after the start_function tactic. As expected, the precondition for the function-body is

PROP() LOCAL(temp _p p) SEP(listrep $\sigma \ p$).

After forward through two assignment statements ($w=\text{NULL}; \ v=p;) the LOCAL part also contains temp _v p; temp _w (Vint (Int.repr 0)).

The loop invariant for the while loop is quite similar to the one given in PLCC Chapter 3 page 20:

$$\exists \sigma_1, \sigma_2. \ \sigma = \text{rev}(\sigma_1) \cdot \sigma_2 \land v \stackrel{\sigma_2}{\sim} 0 * w \stackrel{\sigma_1}{\sim} 0$$

It's quite typical for loop invariants to existentially quantify over the values that are different iteration-to-iteration. We represent this in PROP/LOCAL/SEP notation as,

EX σ_1: list val, EX σ_2: list val, EX w: val, EX v: val,
PROP($\sigma = \text{rev} \ \sigma_1 ++ \ \sigma_2$)
LOCAL(temp _w w; temp _v v)
SEP(listrep $\sigma_1 \ w$; listrep $\sigma_2 \ v$).
We apply forward_while with this invariant, and (as usual) we have four subgoals: (1) precondition implies loop invariant, (2) loop invariant implies typechecking of loop-termination test, (3) loop body preserves invariant, and (4) after the loop.

(1) To prove the precondition implies the loop invariant, we instantiate \(\sigma_1 \) with nil and \(\sigma_2 \) with \(\sigma \); we instantiate \(w \) with NULL and \(v \) with \(p \). But this leaves the goal,

\[
\text{ENTAIL } \Delta, \text{ PROP}() \text{ LOCAL}(\text{temp }_v p; \text{ temp }_w \text{ nullval}; \text{ temp }_p p) \\
\quad \text{SEP}(\text{listrep } \sigma \ p) \\
\vdash \text{ PROP}(\sigma = \text{rev } [] ++ \sigma) \text{ LOCAL}(\text{temp }_w \text{ nullval}; \text{ temp }_v p) \\
\quad \text{SEP}(\text{listrep } [] \text{ nullval}; \text{ listrep } \sigma \ p)
\]

The PROP and LOCAL parts are trivially solvable by the entailer. We can remove the SEP conjunct (listrep [] nullval) by unfolding that occurrence of listrep, leaving \(!!(\text{nullval}=\text{nullval})&&\text{emp}\.\)

(2) The type-checking condition is not trivial, as it is a pointer comparison (see Chapter 45), but the entailer! solves it anyway.

(3) The loop body starts by assuming the loop invariant and the truth of the loop test. Their propositional parts have already been moved above the line at the comment (* loop body preserves invariant *). That is, HRE: \(\text{isptr } v \) says that the loop test is true, and \(H: \sigma = \text{rev } \sigma_1 ++ \sigma_2 \) is from the invariant.

The first statement in the loop body, \(t=\text{v.tail} \); loads from the list cell at \(v \). But our SEP assertion for \(v \) is, listrep \(\sigma_2 \ v \). The assertion listrep \(\sigma_2 \ v \) is not a data_at that we can load from. So we can unfold this occurrence of listrep, but still there is no data_at unless we know that \(\sigma_2 \) is \(h::r \) for some \(h,r \).

We destruct \(\sigma_2 \) leaving two cases: \(\sigma_2 = \text{nil} \) and \(\sigma_2 = h::r \). The first case is a contradiction—by the definition of listrep, we must have \(v == \text{nullptr} \), but that’s incompatible with isptr(\(v \)) above the line.
In the second case, we have (below the line) $\exists y, \ldots$ that binds the value of the tail-pointer of the first cons cell. We move that above the line by \texttt{Intros} y.

\textbf{Now that the first list-cell is unfolded,} it’s easy to go forward through the four commands of the loop body. Now we are (* at end of loop body, re-establish invariant *).

We choose values to instantiate the existentials: \texttt{Exists $(h::\sigma_1, r, v, y)$.} (Note that \texttt{forward.while} has uncurried the four separate \texttt{EX} quantifiers into a single 4-tuple \texttt{EX}.) Then \texttt{entailer!} leaves two subgoals:

\begin{align*}
\text{--(1/2)} \\
\text{rev } \sigma_1 ++ h :: r &= (\text{rev } \sigma_1 ++ [h]) ++ r \\
\text{--(2/2)} \\
\text{listrep } \sigma_1 w * \text{field_at } Tsh \ t\text{-struct_list } [] (h, w) v * \text{listrep } r y
\end{align*}

Indeed, \texttt{entailer!} always leaves at most two subgoals: at most one propositional goal, and at most one cancellation (spatial) goal. Here, the propositional goal is easily dispatched in the theory of (Coq) lists.

The second subgoal requires unrolling the r.h.s. list segment, by unfolding the appropriate instance of \texttt{listrep}. Then we appropriately instantiate some existentials, call on the \texttt{entailer!} again, and the goal is solved.

(4) After the loop, we must prove that the loop invariant \textit{and the negation of the loop-test condition} is a sufficient precondition for the next statement(s). In this case, the next statement is a return; one can \textit{always} go forward through a return, but now we have to prove that our current assertion implies the function postcondition. This is fairly straightforward.
Chapter 27 of PLCC describes a proof of the same list-reverse program, based on a general theory of list segments. That proof is shown in progs/verif_reverse.v.

The general theory is in progs/list_dt.v. It accommodates list segments over any C struct type, no matter how many fields. Here, we import the LsegSpecial module of that theory, covering the “ordinary” case appropriate for the reverse.c program.

Require Import VST.progs.list_dt. Import LsegSpecial.

Then we instantiate that theory for our particular struct list by providing the listspec operator with the names of the struct (_list) and the link field (_tail).

Instance LS: listspec _list _tail.
Proof. eapply mk_listspec; reflexivity. Defined.

All other fields (in this case, just _head) are treated as “data” fields.

Now, lseg LS π σ p q is a list segment starting at pointer p, ending at q, with permission-share π and contents σ.

In general, with multiple data fields, the type of σ is constructed via reptype (see Chapter 29). In this example, with one data field, the type of σ computes to list val.
48 Global variables

In the C language, “extern” global variables live in the same namespace as local variables, but they are shadowed by any same-name local definition. In the C light operational semantics, global variables live in the same namespace as addressable local variables (both referenced by the expression-abstract-syntax constructor Evar), but in a different namespace from nonaddressable locals (expression-abstract-syntax constructor Ettempvar).¹

In the program-AST produced by clightgen, globals (and their initializers) are listed as Gvars in the prog_defs. These are accessed (automatically) in two ways by the Verifiable C program logic. First, their names and types are gathered into Vprog as shown on page 13 (try the Coq command Print Vprog to see this list). Second, their initializers are translated into data_at conjuncts of separation logic as part of the main_pre definition (see page 36).

When proving semax_body for the main function, the start_function tactic takes these definitions from main_pre and puts them in the precondition of the function body. In some cases this is done using the more-primitive mapsto operator², in other cases it uses the higher-level (and more standard) data_at³.

¹This difference in namespace treatment cannot matter in a program translated by CompCert clightgen from C, because no as-translated expression will exercise the difference.
²For example, examine the proof state in progs/verif_reverse.v immediately after start_function in Lemma body_main; and see the conversion to data_at done by the setupGlobals lemma in that file.
³For example, examine the proof state in progs/verif_sumarray.v immediately after start_function in Lemma body_main.
49 For loops (special case)

Many for-loops have the form, \(\text{for (init; } i < hi; i++ \text{) body} \) such that the expression \(hi \) will evaluate to the same value every time around the loop. This upper-bound expression need not be a literal constant, it just needs to be invariant.

For these loops you can use the tactic,

\[
\text{forward_for_simple_bound } n \ (\text{EX } i:\mathbb{Z}, \text{PROP}(\vec{P}) \text{ LOCAL}(\vec{Q}) \text{ SEP}(\vec{R}) \text{)}%\text{assert.}
\]

\[
\text{forward_for_simple_bound } n \ (\text{EX } i:\mathbb{Z}, \text{EX } x:A, \text{PROP...LOCAL...SEP...})%\text{assert.}
\]

where \(n \) is the upper bound: a Coq value of type \(\mathbb{Z} \) such that \(hi \) will evaluate to \(n \). This tactic generates simpler subgoals than the general forward_for tactic.

The loop invariant is \((\text{EX } i:\mathbb{Z}, \text{PROP}(\vec{P}) \text{ LOCAL}(\vec{Q}) \text{ SEP}(\vec{R}))\), where \(i \) is the value (in each iteration) of the loop iteration variable \(.i \). You must have an existential quantifier for the value of the loop-iteration variable. You may have a second \(\exists \) for a value of your choice that depends on \(i \).

You must omit from \(Q \) any mention of the loop iteration variable \(.i \). The tactic will insert the binding temp \(.i \ i \). You need not write \(i \leq hi \) in \(P \), the tactic will insert it.

An example of a for-loop proof is in progs/verif_sumarray2.v. This is an alternate implementation of progs/sumarray.c (see Chapter 13) that uses a for loop instead of a while loop:

```c
unsigned sumarray(unsigned a[], int n) { /* sumarray2.c */
  int i; unsigned s=0;
  for (i=0; i<n; i++) { s += a[i]; }
  return s;
}
```

Also see progs/verif_min.v for several approaches to the specification/verification of another for-loop.
50 For loops (general iterators)

This tactic is deprecated; use forward_loop instead; see the next chapter.

The C-language for loop has the general form, for \((\text{init}; \text{test}; \text{incr}) \) \text{body}. If your for-loop has an iteration variable that is tested by the \text{test} and adjusted by the \text{incr}, then you can probably use forward_for, described in this chapter. If not, use forward_loop (see the next chapter).

Let \(\text{Inv} \) be the loop invariant, established by the initializer and preserved by the body-plus-increment. Let \(\text{PreInc} \) be the assertion just before the increment. Both \(\text{Inv} \) and \(\text{PreInc} \) have type \(A \rightarrow \text{environ} \rightarrow \text{mpred} \), where \(A \) is the Coq type of the abstract values carried by your iteration variable; typically this is just \(\mathbb{Z} \).

\(\text{Post} \) is the join-postcondition of the loop; you don’t need to provide it if either (1) there are no \text{break} statements in the loop, or (2) the postcondition is already provided in your proof context (typically because a close-brace follows the entire loop). Depending on whether you need \(\text{Post} \), verify the loop with,

\[
\text{forward_for } \text{Inv} \text{ continue: } \text{PreInc}. \quad \text{or} \quad \text{forward_for } \text{Inv} \text{ continue: } \text{PreInc} \text{ break: } \text{Post}.
\]

This is demonstrated in body_sumarray_alt from progs/verif_sumarray2.v.

\begin{verbatim}
unsigned sumarray(unsigned a[], int n) {
 int i; unsigned s;
 s=0;
 for (i=0;
 /* Inv : loop invariant */
 i<n; i++) {
 s += a[i];
 /* PreInc : pre-increment invariant */
 }
 /* Post : loop postcondition */
 return s;
}
\end{verbatim}
51 Loops (fully general)

The C-language for loop has the general form, for \((init; test; incr)\) \(body\).

The C-language while loop with break and continue is equivalent to a for loop with empty \(init\) and \(incr\).

The C-language infinite-loop, written \(for(;;)c\) or \(while(1)c\) is also a form of the for-loop.

The most general tactic for proving any of these loops is, forward_loop \(Inv\) continue: \(PreInc\) break: \(Post\).

The assertion \(Inv: environ \rightarrow mpred\) is the loop invariant.
\(PreInc: environ \rightarrow mpred\) is the invariant just before the \(incr\).
The assertion \(Post: environ \rightarrow mpred\) is the postcondition of the loop.

If your \(incr\) is empty (or Sskip), or if the \(body\) has no continue statements, you can omit \(continue: PreInc\).

If your postcondition is already fully determined (POSTCOND contains no unification variables), then you can omit \(break: Post\).

If you’re not sure whether to omit the break: or continue: assertions, just try forward_loop \(Inv\) without them, and Floyd will advise you.
Manipulating preconditions

In some cases you cannot go forward until the precondition has a certain form. For example, to go forward through $t = v \rightarrow \text{tail}$; there must be a data_at or field_at in the SEP clause of the precondition that gives a value for _tail field of t. As page 76 describes, a listrep can be unfolded to expose such a SEP conjunct.

Faced with the proof goal, $\text{semax} \Delta (\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(\vec{R})) \ c \ Post$ where $\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(\vec{R})$ does not match the requirements for forward symbolic execution, you have several choices:

- Use the rule of consequence explicitly:
 apply semax_pre with $\text{PROP}(\vec{P}')\text{LOCAL}(\vec{Q}')\text{SEP}(\vec{R}')$,
 then prove $\text{ENTAIL} \Delta, \vec{P};\vec{Q};\vec{R} \vdash \vec{P}';\vec{Q}';\vec{R}'$.

- Use the rule of consequence implicitly, by using tactics (page 83) that modify the precondition.

- Do rewriting in the precondition, either directly by the standard rewrite and change tactics, or by normalize (page 64).

- Extract propositions and existentials from the precondition, by using Intros (page 41) or normalize.

- Flatten stars into semicolons, in the SEP clause, by Intros.

- Use the freezer (page 107) to temporarily “frame away” spatial conjuncts.
TACTICS FOR MANIPULATING PRECONDITIONS. In many of these tactics we select specific conjuncts from the SEP items, that is, the semicolon-separated list of separating conjuncts. These tactics refer to the list by zero-based position number, 0,1,2,\ldots.

For example, suppose the goal is a semax or entailment containing \(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(a;b;c;d;e;f;g;h;i;j) \). Then:

focus_SEP \ i \ j \ k. Bring items \#i,j,k to the front of the SEP list.

<table>
<thead>
<tr>
<th>focus_SEP i j k</th>
<th>results in</th>
<th>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(f;a;b;c;d;e;g;h;i;j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>focus_SEP 5</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(a;b;c;d;e;f;g;h;i;j))</td>
</tr>
<tr>
<td>focus_SEP 0</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(b;d;a;c;e;f;g;h;i;j))</td>
</tr>
<tr>
<td>focus_SEP 1 3</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(d;b;a;c;e;f;g;h;i;j))</td>
</tr>
<tr>
<td>focus_SEP 3 1</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(d*b;a;c;e;f;g;h;i;j))</td>
</tr>
</tbody>
</table>

gather_SEP \ i \ j \ k. Bring items \#i,j,k to the front of the SEP list and conjoin them into a single element.

<table>
<thead>
<tr>
<th>gather_SEP i j k</th>
<th>results in</th>
<th>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(f;a;b;c;d;e;g;h;i;j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>gather_SEP 5</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(b*d;a;c;e;f;g;h;i;j))</td>
</tr>
<tr>
<td>gather_SEP 1 3</td>
<td>results in</td>
<td>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(d*b;a;c;e;f;g;h;i;j))</td>
</tr>
</tbody>
</table>

replace_SEP \ i \ R. Replace the \(i \)th element the SEP list with the assertion \(R \), and leave a subgoal to prove.

<table>
<thead>
<tr>
<th>replace_SEP 3 R</th>
<th>results in</th>
<th>(\text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(a;b;c;R;e;f;g;h;i;j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>with subgoal</td>
<td>PROP(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(d) \vdash R.</td>
<td></td>
</tr>
</tbody>
</table>

replace_in_pre \ S \ S'. Replace \(S \) with \(S' \) anywhere it occurs in the precondition then leave \((\vec{P};\vec{Q};\vec{R}) \vdash (\vec{P};\vec{Q};\vec{R})[S'/S] \) as a subgoal.

frame_SEP \ i \ j \ k. Apply the frame rule, keeping only elements \(i,j,k \) of the SEP list. See Chapter 53.
53 The Frame rule

Separation Logic supports the Frame rule,

\[
\begin{align*}
\text{Frame} & \quad \frac{(P) \mathcal{c} (Q)}{(P \ast F) \mathcal{c} (Q \ast F)} \\
\end{align*}
\]

To use this in a forward proof, suppose you have the proof goal,
\[
\text{semax} \Delta \text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(R_0; R_1; R_2) \quad (c_1; c_2; c_3) \quad \text{Post}
\]

and suppose you want to “frame out” \(R_2\) for the duration of \(c_1; c_2\), and have it back again for \(c_3\). First you rewrite by seq_assoc to yield the goal
\[
\text{semax} \Delta \text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(R_0; R_1; R_2) \quad (c_1; c_2); c_3 \quad \text{Post}
\]

Then eapply semax_seq' to peel off the first command \((c_1; c_2)\) in the new sequence:
\[
\text{semax} \Delta \text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(R_0; R_1; R_2) \quad c_1; c_2 \quad ?88
\]
\[
\text{semax} \Delta' \quad ?88 \quad c_3 \quad \text{Post}
\]

Then frame_SEP 0 2 to retain only \(R_0; R_2\).
\[
\text{semax} \Delta \text{PROP}(\vec{P})\text{LOCAL}(\vec{Q})\text{SEP}(R_0; R_2) \quad c_1; c_2 \quad \dots
\]

Now you’ll see that (in the precondition of the second subgoal) the unification variable \(?88\) has been instantiated in such a way that \(R_2\) is added back in.
54 32-bit Integers

The VST program logic uses CompCert’s 32-bit integer type.

Inductive comparison := Ceq | Cne | Clt | Cle | Cgt | Cge.

Int.wordsize : nat = 32.
Int.modulus : Z = 2^{32}.
Int.max_unsigned : Z = $2^{32} - 1$.
Int.max_signed : Z = $2^{31} - 1$.
Int.min_signed : Z = -2^{31}.

Int.int : Type.
Int.unsigned : int → Z.
Int.signed : int → Z.
Int.repr : Z → int.

Int.zero := Int.repr 0.

(* Operators of type int→int→bool *)
Int.eq Int.lt Int.ltu Int.cmp(c:comparison) Int.cmpu(c:comparison)

(* Operators of type int→int *)
Int.neg Int.not

(* Operators of type int→int→int *)
Int.add Int.sub Int.mul Int.divs Int.mods Int.divu Int.modu
Int.and Int.or Int.xor Int.shl Int.shru Int.shr Int.rol Int.ror Int.rolm

Lemma eq_dec: $\forall (x \ y : int), \{ x = y \} + \{ x <> y \}$.
Theorem unsigned_range: $\forall i, \ 0 \leq \text{unsigned} \ i < \text{modulus}$.
Theorem unsigned_range_2: $\forall i, \ 0 \leq \text{unsigned} \ i \leq \text{max Unsigned}$.
Theorem signed_range: $\forall i, \ \text{min Signed} \leq \text{signed} \ i \leq \text{max Signed}$.
Theorem repr_unsigned: $\forall i, \ \text{repr} \ (\text{unsigned} \ i) = i$.
Lemma repr_signed: $\forall i, \ \text{repr} \ (\text{signed} \ i) = i$.
Theorem unsigned_repr:
$\forall z, \ 0 \leq z \leq \text{max Unsigned} \rightarrow \text{unsigned} \ (\text{repr} \ z) = z$.
Theorem signed_repr:
\[\forall z, \text{min}_{\text{signed}} \leq z \leq \text{max}_{\text{signed}} \rightarrow \text{signed} (\text{repr} z) = z. \]

Theorem signed_eq_unsigned:
\[\forall x, \text{unsigned} x \leq \text{max}_{\text{signed}} \rightarrow \text{signed} x = \text{unsigned} x. \]

Theorem unsigned_zero: unsigned zero = 0.
Theorem unsigned_one: unsigned one = 1.
Theorem signed_zero: signed zero = 0.

Theorem eq_sym: \(\forall x \ y, \text{eq} x \ y = \text{eq} y \ x. \)
Theorem eq_spec: \(\forall (x \ y : \text{int}), \text{if eq} x \ y \ \text{then} \ x = y \ \text{else} \ x \ <> y. \)
Theorem eq_true: \(\forall x, \text{eq} x \ x = \text{true}. \)
Theorem eq_false: \(\forall x \ y, x <> y \rightarrow \text{eq} x \ y = \text{false}. \)

Theorem add_unsigned: \(\forall x \ y, \text{add} x \ y = \text{repr} (\text{unsigned} x + \text{unsigned} y). \)
Theorem add_signed: \(\forall x \ y, \text{add} x \ y = \text{repr} (\text{signed} x + \text{signed} y). \)
Theorem add_commut: \(\forall x \ y, \text{add} x \ y = \text{add} y \ x. \)
Theorem add_zero: \(\forall x, \text{add} x \ \text{zero} = \ x. \)
Theorem add_zero_l: \(\forall x, \text{add} \ \text{zero} \ x = \ x. \)
Theorem add_assoc: \(\forall x \ y \ z, \text{add} (\text{add} x \ y) \ z = \text{add} x (\text{add} y \ z). \)

Theorem neg_repr: \(\forall z, \text{neg} (\text{repr} z) = \text{repr} (-z). \)
Theorem neg_zero: \(\text{neg} \ \text{zero} = \ \text{zero}. \)
Theorem neg_involutive: \(\forall x, \text{neg} (\text{neg} x) = x. \)
Theorem neg_add_distr: \(\forall x \ y, \text{neg}(\text{add} x \ y) = \text{add} (\text{neg} x) (\text{neg} y). \)

Theorem sub_zero_l: \(\forall x, \text{sub} x \ \text{zero} = \ x. \)
Theorem sub_zero_r: \(\forall x, \text{sub} \ \text{zero} \ x = \neg x. \)
Theorem sub_add_opp: \(\forall x \ y, \text{sub} x \ y = \text{add} x (\neg y). \)
Theorem sub_idem: \(\forall x, \text{sub} x \ x = \text{zero}. \)
Theorem sub_add_l: \(\forall x \ y \ z, \text{sub} (\text{add} x \ y) \ z = \text{add} (\text{sub} x \ z) \ y. \)
Theorem sub_add_r: \(\forall x \ y \ z, \text{sub} x (\text{add} y \ z) = \text{add} (\text{sub} x \ z) (\neg y). \)
Theorem sub_shifted: \(\forall x \ y \ z, \text{sub} (\text{add} x \ z) (\text{add} y \ z) = \text{sub} x \ y. \)
Theorem sub_signed: \(\forall x \ y, \text{sub} x \ y = \text{repr} (\text{signed} x -\text{signed} y). \)
Theorem \texttt{mul_commut}: \(\forall x \ y, \texttt{mul} \ x \ y = \texttt{mul} \ y \ x\).

Theorem \texttt{mul_zero}: \(\forall x, \texttt{mul} \ x \ \texttt{zero} = \texttt{zero}\).

Theorem \texttt{mul_one}: \(\forall x, \texttt{mul} \ x \ \texttt{one} = x\).

Theorem \texttt{mul_assoc}: \(\forall x \ y \ z, \texttt{mul} \ (\texttt{mul} \ x \ y) \ z = \texttt{mul} \ x \ (\texttt{mul} \ y \ z)\).

Theorem \texttt{mul_add_distr_l}: \(\forall x \ y \ z, \texttt{mul} \ (\texttt{add} \ x \ y) \ z = \texttt{add} \ (\texttt{mul} \ x \ z) \ (\texttt{mul} \ y \ z)\).

Theorem \texttt{mul_signed}: \(\forall x \ y, \texttt{mul} \ x \ y = \texttt{repr} \ (\texttt{signed} \ x \ \ast \ \texttt{signed} \ y)\).

and many more axioms for the bitwise operators, shift operators, signed/unsigned division and mod operators.
CompCert C abstract syntax

The CompCert verified C compiler translates standard C source programs into an abstract syntax for CompCert C, and then translates that into abstract syntax for C light. Then VST Separation Logic is applied to the C light abstract syntax. C light programs proved correct using the VST separation logic can then be compiled (by CompCert) to assembly language.

C light syntax is defined by these Coq files from CompCert:

Integers. 32-bit (and 8-bit, 16-bit, 64-bit) signed/unsigned integers.

Floats. IEEE floating point numbers.

Values. The val type: integer + float + pointer + undefined.

AST. Generic support for abstract syntax.

Ctypes. C-language types and structure-field-offset computations.

Clight. C-light expressions, statements, and functions.

You will see C light abstract syntax constructors in the Hoare triples (semax) that you are verifying. We summarize the constructors here.

Inductive expr : Type :=

(* 1 *) | Econst_int: int → type → expr

(* 1.0 *) | Econst_float: float → type → expr (* double precision *)

(* 1.0f0 *) | Econst_single: float → type → expr (* single precision *)

(* 1L *) | Econst_long: int64 → type → expr

(* x *) | Evar: ident → type → expr

(* x *) | Etempvar: ident → type → expr

(* *e *) | Ederef: expr → type → expr

(* &e *) | Eaddr: expr → type → expr

(* ~e *) | Eunop: unary_operation → expr → type → expr

(* e→e *) | Ebinop: binary_operation → expr → expr → type → expr

(* (int)e *) | Ecast: expr → type → expr

(* e.f *) | Efield: expr → ident → type → expr.
Inductive unary_operation := Onotbool | Onotint | Oneg | Oabsfloat.

Inductive binary_operation := Oadd | Osub | Omul | Odiv | Omod | Oand | Oor | Oxor | Oshl | Oeq | One | Olt | Ogt | Ole | Oge.

Inductive statement : Type :=
(* /**/;*) | Sskip : statement
(* E_1=E_2; *) | Sassign : expr → expr → statement (* memory store *)
(* x=E; *) | Sset : ident → expr → statement (* tempvar assign *)
(* x=f(...); *) | Scall : option ident → expr → list expr → statement
(* x=b(...); *) | Sbuiltin : option ident → external_function → typelist →
| list expr → statement
(* s_1; s_2 *) | Ssequence : statement → statement → statement
(* if() else {} *) | Sifthenelse : expr → statement → statement → statement
(* for (;;s_2) s_1 *) | Sloop : statement → statement → statement
(* break; *) | Sbreak : statement
(* continue; *) | Scontinue : statement
(* return E; *) | Sreturn : option expr → statement
| Sswitch : expr → labeled_statements → statement
| Slabel : label → statement → statement
| Sgoto : label → statement.
56 C light semantics

The operational semantics of C light statements and expressions is given in compcert/cfrontend/Clight.v. We do not expose these semantics directly to the user of Verifiable C. Instead, the statement semantics is reformulated as semax, an axiomatic (Hoare-logic style) semantics. The expression semantics is reformulated in veric/expr.v and veric/Cop2.v as a computational \(^1\) big-step evaluation semantics. In each case, a soundness proof relates the Verifiable C semantics to the CompCert Clight semantics.

Rules for semax are given in veric/SeparationLogic.v—but you rarely use these rules directly. Instead, derived lemmas regarding semax are proved in floyd/*.v and Floyd’s forward tactic applies them (semi)automatically.

The following functions (from veric/expr.v) define expression evaluation:

- `eval_id {CS: compspecs} (id: ident) : environ → val.` (*evaluate a tempvar *)
- `eval_var {CS: compspecs} (id: ident) (ty: type) : environ → val.` (*evaluate an lvar or gvar, addressable local or global variable *)
- `eval_cast (t t': type) (v: val) : val.` (*cast value v from type t to type t', but beware! There are three types involved, including native type of v. *)
- `eval_unop (op: unary_operation) (t1 : type) (v1 : val) : val.`
- `eval_binop{CS:compspecs} (op:binary_operation) (t1 t2: type) (v1 v2: val): val.`
- `eval_lvalue {CS: compspecs} (e: expr) : environ → val.` (*evaluate an l-expression, one that denotes a loadable/storable place*)
- `eval_expr {CS: compspecs} (e: expr) : environ → val.` (*evaluate an r-expression, one that is not storable *)

The `environ` argument is for looking up the values of local and global variables. However, in most cases where Verifiable C users see eval_lvalue or eval_expr—in subgoals generated by the forward tactic—all the variables

\(^1\)that is, defined by Fixpoint instead of by Inductive.
have already been substituted by values. Thus the environment is not needed.

The expression-evaluation functions call upon several helper functions from veric/Cop2.v:

- `sem_cast: type → type → val → option val.
- `sem_cast_∗ (∗ several helper functions for sem_cast ∗)
- `bool_val: type → val → option bool.
- `bool_val_∗: (∗ helper functions ∗)
- `sem_notbool: type → val → option val.
- `sem_neg: type → val → option val.
- `sem_sub {CS: compspecs}: type → type → val → val → option val.
- `sem_sub_∗: (∗ helper functions ∗)
- `sem_add {CS: compspecs}: type → type → val → val → option val.
- `sem_add_∗: (∗ helper functions ∗)
- `sem_mul: type → type → val → val → option val.
- `sem_div: type → type → val → val → option val.
- `sem_mod: type → type → val → val → option val.
- `sem_and: type → type → val → val → option val.
- `sem_or: type → type → val → val → option val.
- `sem_xor: type → type → val → val → option val.
- `sem_shl: type → type → val → val → option val.
- `sem_shr: type → type → val → val → option val.
- `sem_cmp: comparison → type → type → (…) → val → val → option val.
- `sem_unary_operation: unary_operation → type → val → option val.
- `sem_binary_operation {CS: compspecs}:
 - binary_operation → type → type → mem → val → val → option val.

The details are not so important to remember. The main point is that Coq expressions of the form sem…. should simplify away, provided that their arguments are instantiated with concrete operators, concrete constructors Vint/Vptr/Vfloat, and concrete C types. The int values (etc.) carried inside Vint/Vptr/Vfloat do not need to be concrete: they can be Coq variables. This is the essence of proof by symbolic execution.
57 Splitting arrays

Consider this example, from the main function of progs/verif_sumarray2.v:

data_at sh (tarray tuint k) al p : mpred

The data_at predicate here says that in memory starting at address p there is an array of k slots containing, respectively, the elements of the sequence al.

Suppose we have a function sumarray(unsigned $a[]$, int n) that takes an array of length n, and we apply it to a “slice” of p: sumarray($p+i$, k-i); where $0 \leq i \leq k$. The precondition of the sumarray funspec has data_at sh (tarray tint n) al.

In this case, we would like $a = &$(p[i]), $n = k - j$, and $bl = $ the sublist of al from i to $k - 1$.

To prove this function-call by forward_call, we must split up (data_at sh (tarray tint k) al p) into two conjuncts:

(data_at sh (tarray tint i) (sublist 0 i al) p *)

(data_at sh (tarray tuint ($k - i$)) (sublist i k al) q),

where q is the pointer to the array slice beginning at address $p + i$. We write this as, $q = $ field_address0 (tarray tint k) [ArraySubsc i] p. That is, given a pointer p to a data structure described by (tarray tint k), calculate the address for subscripting the ith element. (See Chapter 37)

As shown in the body_main proof in progs/verif_sumarray2.v, the lemma split_array proves the equivalence of these two predicates, using the VST-Floyd lemma split2_data_at_Tarray. Then the data_at ... q predicate can satisfy the precondition of sumarray, while the p slice will be part of the “frame” for the function call.

See also: split3_data_at_Tarray.
Chapter 57 explained that we often need to reason about slices of arrays whose contents are sublists of lists. For that we have a function sublist $i \; j \; l$ which makes a new list out of the elements $i \ldots j - 1$ of list l.

To simplify expressions involving, sublist, $\oplus\oplus$, map, Zlength, Znth, and list_repeat, use autorewrite with sublist.

Often, you find equations “above the line” of the form,

$H: n = \text{Zlength} \left(\text{map} \; \text{Vint} \left(\text{map} \; \text{Int}.\text{repr} \; \text{contents} \right) \right)$

You may find it useful to do autorewrite with sublist in \vdash to change this to $n=\text{Zlength} \; \text{contents}$ before proceeding with (autorewrite with sublist) below the line.

These rules comprise the sublist rewrite database:

- sublist-nil': $i = j \rightarrow \text{sublist} \; i \; j \; l = \text{[]}$.
- app-nil_l: $\text{[]} \oplus\oplus l = l$.
- app-nil_r: $l \oplus\oplus \text{[]} = l$.
- Zlength_rev: $\text{Zlength} \; (\text{rev} \; l) = \text{Zlength} \; l$.
- sublist_rejoin': $0 \leq i \leq j = j' \leq k \leq \text{Zlength}l \rightarrow$
 $$\text{sublist} \; i \; j \; l \oplus\oplus \text{sublist} \; j' \; k \; l = \text{sublist} \; i \; k \; l$$
-subsub1: $a - (a - b) = b$.
- Znth_list_repeat_inrange: $0 \leq i \leq n \rightarrow \text{Znth} \; i \; (\text{list}\text{-repeat} \; (\text{Z}.\text{to-nat} \; n) \; a) = a$.
- Zlength_cons: $\text{Zlength} \; (a::l) = \text{Z.succ} \; (\text{Zlength} \; l)$.
- Zlength nil: $\text{Zlength} \; \text{[]} = 0$.
- Zlength app: $\text{Zlength} \; (l \oplus\oplus l') = \text{Zlength} \; l \oplus\oplus \text{Zlength} \; l'$.
- Zlength map: $\text{Zlength} \; (\text{map} \; f \; l) = \text{Zlength} \; l$.
- list_repeat_0: $\text{list}\text{-repeat} \; (\text{Z}.\text{to-nat} \; 0) = \text{[]}$.
- Zlength_list_repeat: $0 \leq n \rightarrow \text{Zlength} \; (\text{list}\text{-repeat} \; (\text{Z}.\text{to-nat} \; n)) = n$.
- Zlength sublist: $0 \leq i \leq j \leq \text{Zlength} \; l \rightarrow \text{Zlength} \; (\text{sublist} \; i \; j \; l) = j - i$.
- sublist_sublist: $0 \leq m \rightarrow 0 \leq k \leq i \leq j - m \rightarrow$
 $$\text{sublist} \; k \; i \; (\text{sublist} \; m \; j \; l) = \text{sublist} \; (k + m) \; (i + m) \; l$$
- sublist_app1: $0 \leq i \leq j \leq \text{Zlength} \; l \rightarrow \text{sublist} \; i \; j \; (l \oplus\oplus l') = \text{sublist} \; i \; j \; l$.
sublist_app2: \(0 \leq \text{Zlength } l \leq i \rightarrow\)
\[\text{sublist } i \ j \ (l++ \ l') = \text{sublist } (i-\text{Zlength } l) \ (j-\text{Zlength } l) \ l'.\]

sublist_list_repeat: \(0 \leq i \leq j \leq k \rightarrow\)
\[\text{sublist } i \ j \ (\text{list_repeat } (\text{Z.to_nat } k) \ v) = \text{list_repeat } (\text{Z.to_nat } (j-i)) \ v.\]

sublist_same: \(i = 0 \rightarrow j = \text{Zlength } l \rightarrow \text{sublist } i \ j \ l = l.\)

app_Znth1: \(i < \text{Zlength } l \rightarrow \text{Znth } i \ (l++ \ l') = \text{Znth } i \ l.\)

app_Znth2: \(i \geq \text{Zlength } l \rightarrow \text{Znth } i \ (l++ \ l') = \text{Znth } i - \text{Zlength } l \ l'.\)

\(\text{Znth}_\text{sublist}: 0 \leq i \rightarrow 0 \leq j < k - i \rightarrow \text{Znth } j \ (\text{sublist } i \ k \ l) = \text{Znth } (j+i) \ l.\)

along with miscellaneous Z arithmetic:

\[n-0 = n \quad 0+n = n \quad n+0 = n \quad n \leq m \rightarrow \text{max}(n,m) = m\]
\[n+m-n = m \quad n+m-m = n \quad m-n+n = m \quad n-n = 0\]
\[n+m-(n+p) = m-p \quad \text{etcetera.}\]
To solve goals such as

\[H: \text{Zlength } \text{al } < 50 \]

\[0 \leq \text{Zlength } \text{al } \leq \text{Int.max.signed} \]

you want to use the omega tactic augmented by many facts about the representations of integers: the numeric values of \(\text{Int.min.signed}, \text{Int.max.signed} \), etc.; the fact that \(\text{Zlength} \) is nonnegative; the fact that \(0 \leq \text{Int.unsigned } z \leq \text{Int.max.unsigned} \), and so on.

The \text{rep.omega} tactic does this. In addition, it “knows” all the facts in the \textbf{Hint Rewrite : rep.omega} database. This is very helpful when using Opaque constants, as explained in \texttt{progs/tutorial1.v}, Lemmas \texttt{exercise4} through \texttt{exercise4c}.
Many of the Hoare rules (e.g., see PLCC, page 161) have the operator \(\triangleright\) (pronounced "later") in their precondition:

\[
\text{semax_set_forward} \quad \Delta \vdash \{\triangleright P\} \; x := e \; \{\exists v. x = (e[v/x]) \land P[v/x]\}
\]

The modal assertion \(\triangleright P\) is a slightly weaker version of the assertion \(P\). It is used for reasoning by induction over how many steps left we intend to run the program. The most important thing to know about \(\triangleright\)later is that \(P\) is stronger than \(\triangleright P\), that is, \(P \vdash \triangleright P\); and that operators such as \(*\), \&\&, \text{ALL} (and so on) commute with later: \(\triangleright (P * Q) = (\triangleright P) * (\triangleright Q)\).

This means that if we are trying to apply a rule such as \text{semax_set_forward}; and if we have a precondition such as

\[
\text{local (tc_expr}\; \Delta\; e) \&\& \triangleright \text{local (tc_temp_id id t}\; \Delta\; e) \&\& (P_1 \ast \triangleright P_2)
\]

then we can use the rule of consequence to weaken this precondition to

\[
\triangleright (\text{local (tc_expr}\; \Delta\; e) \&\& \text{local (tc_temp_id id t}\; \Delta\; e) \&\& (P_1 \ast P_2))
\]

and then apply \text{semax_set_forward}. We do the same for many other kinds of command rules.

This weakening of the precondition is done automatically by the forward tactic, as long as there is only one \(\triangleright\)later in a row at any point among the various conjuncts of the precondition.

A more sophisticated understanding of \(\triangleright\) is needed to build proof rules for recursive data types and for some kinds of object-oriented programming; see PLCC Chapter 19.
Aside from the standard operators and axioms of separation logic, the core separation logic has just two primitive spatial predicates:

Parameter address_mapsto:

memory_chunk \rightarrow \text{val} \rightarrow \text{share} \rightarrow \text{share} \rightarrow \text{address} \rightarrow \text{mpred}.

Parameter func_ptr : funspec \rightarrow \text{val} \rightarrow \text{mpred}.

\text{func_ptr} \phi \nu \quad \text{means that value } \nu \text{ is a pointer to a function with specification } \phi; \text{ see Chapter 66.}

address_mapsto expresses what is typically written \(x \mapsto y\) in separation logic, that is, a singleton heap containing just value \(y\) at address \(x\).

From this, we construct two low-level derived forms:

\text{mapsto} (sh: \text{share}) (t: \text{type}) (v w: \text{val}) : \text{mpred} \quad \text{describes a singleton heap with just one value } \nu \text{ of (C-language) type } t \text{ at address } v, \text{ with permission-share } s h.

\text{mapsto} (sh: \text{share}) (t: \text{type}) (v: \text{val}) : \text{mpred} \quad \text{describes an uninitialized singleton heap with space to hold a value of type } t \text{ at address } v, \text{ with permission-share } s h.

From these primitives, field_at and data_at are constructed.
62 gvars: Private global variables

If your C module (typically, a .c file, but it could be part of a .c file or several .c files) accesses private global variables, you may want to avoid mentioning their names in the public interface.

Definition MyModuleGlobs (gv: globals) : mpred :=

(* for example *) data_at Tsh t_struct_foo some_value (gv _MyVar).

DECLARE _myfunction
WITH ..., gv: globals
PRE [...]
 PROP(...) LOCAL(...; gvars gv) SEP(...; MyModuleGlobs gv)
POST [...]
 PROP() LOCAL(temp ret_temp ...) SEP(...; MyModuleGlobs gv).

The client of myfunction sees that there is a private conjunct MyModuleGlobs gv that (presumably) uses some global variables of MyModule, but it does not see their names.

When you do a semax_body proof of a function that directly accesses a global variable such as _MyVar, and you have gvars gv in your LOCAL precondition, then start_function will add gvar _MyVar (gv _Myvar) to the LOCALs clause, so that your variable-accesses will work.

By convention, you should put gv:globals as the last component of your WITH clause.

Sometimes you may want a LOCAL assertion (gvar _v (gv _v)) even for a variable _v that you don’t use directly in this function; you can use the tactic assert_gvar _v to add it (calculated from Delta and (gvars gv)).
A CompCert C program is implicitly linked with dozens of “built-in” and library functions. In the .v file produced by clightgen, the prog.defs component of your prog lists these as External definitions, along with the Internal definitions of your own functions. Every one of these needs exactly one funspec, of the form DECLARE...WITH..., and this funspec must be proved with a semax_ext proof.

Fortunately, if your program does not use a given library function \(f \), then the funspec DECLARE \(f \) WITH...PRE[...] False POST... with a False precondition is easy to prove! The tactic with-library prog \([s_1; s_2; \ldots; s_n] \) augments your explicit funspec-list \([s_1; s_2; \ldots; s_n] \) with such trivial funspecs for the other functions in the program prog.

Definition Gprog := ltac:(with-library prog [sumarray_spec; main_spec]).

You may wish to use standard library functions such as malloc, free, exit. These are axiomatized (with external funspecs) in floyd.library. To use them, Require Import VST.floyd.library after you import floyd.proofauto. This imports a (floyd.library.)with_library tactic hiding the standard (floyd.forward.)with_library tactic; the new one includes axiomatized specifications for malloc, free, exit, etc. We haven’t proved the implementations against the axioms, so if you don’t trust them, then don’t import floyd.library.

The next chapters explain the specifications of certain standard-library functions.
The C library’s malloc and free functions have these specifications:

DECLARE _malloc
WITH cs: compspecs, t:type
PRE [1%positive OF tuint]
 PROP(0 ≤ sizeof t ≤ Int.max_unsigned;
 complete_legal_cosu_type t = true;
 natural_aligned natural_alignment t = true)
 LOCAL(temp 1%positive (Vint (Int.repr (sizeof t))))
SEP()
POST [tptr tvoid] EX p:-,
 PROP()
 LOCAL(temp ret_temp p)
 SEP(if eq_dec p nullval then emp
 else (malloc_token Tsh t p * data_at Tsh t p)).

DECLARE _free
WITH cs: compspecs, t: type, p:val
PRE [1%positive OF tptr tvoid]
 PROP()
 LOCAL(temp 1%positive p)
 SEP(malloc_token Tsh t p; data_at Tsh t p)
POST [Tvoid]
 PROP()
 LOCAL()
 SEP().

You must **Import** VST.floyd.library. Then these funspecs are made available in your Gprog by the use of the with_library tactic (Chapter 63).

The purpose of the malloc_token is to describe the special record-descriptor that tells free how big the allocated record was.
See progs/verif_queue.v for a demonstration of malloc/free.
65 exit

Import VST.floyd.library. before you define
Gprog := ltac:(with_library prog [...]).
and you will get:

DECLARE _exit
 WITH u: unit
 PRE [1%positive OF tint]
 PROP() LOCAL() SEP()
 POST [tvoid]
 PROP(False) LOCAL() SEP().
66 Function pointers

Parameter func_ptr : funspec → val → mpred.

Definition

\[\text{func_ptr}' \; \phi \; v := \text{func_ptr} \; f \; v \; \&\& \; \text{emp}. \]

\(\text{func_ptr} \; \phi \; v \) means that \(v \) is a pointer to a function with funspec \(\phi \).

\(\text{func_ptr}' \; \phi \; v \) is a form more suitable to be a conjunct of a SEP clause.

Verifiable C’s program logic is powerful enough to reason expressively about function pointers (see PLCC Chapters 24 and 29). Object-oriented programming with function pointers is illustrated, in two different styles, by the programs progs/message.c and progs/object.c, and their verifications, progs/verif_message.c and progs/verif_object.c.

In this chapter, we illustrate using the much simpler program, progs/funcptr.c.

```c
int myfunc (int i) { return i+1; }
void *a[] = {myfunc};
int main (void) {
    int (*f)(int);
    int j;
    f = &myfunc;
    j = f(3);
    return j;
}
```

The verification, in progs/verif_funcptr.v, defines

Definition

\[\text{myfunc_spec} := \text{DECLARE} \; \text{myfunc} \; \text{myspec}. \]

where \(\text{myspec} \) is a Definition for a WITH...PRE...POST specification.

Near the beginning of **Lemma** body_main, notice that we have \(\text{LOCAL(gvar \; myfunc \; p)} \) in the precondition. That \(\text{gvar} \) is needed by the tactic make_func_ptr myfunc, which adds func_ptr' myspec p to the
SEP clause. It “knows” to use myspec because it looks up _myfunc in Delta (which, in turn, is derived from Gprog).

Now, forward through the assignment f=myfunc works as you might expect, adding the LOCAL clause temp _f p.

To call a function-variable, such as this program’s j=f(3); just use forward_call as usual. However, in such a case, forward_call will find its funspec in a func_ptr' SEP-clause, rather than as a global entry in Delta as for ordinary function calls.

Note: Unfortunately, in order to get the gvar _myfunc into the precondition of main, there must be some initialized global variable that refers to myfunc. That’s the purpose of the (otherwise useless) array a in this program. And suppose you wanted to do make_func.ptr in some function other than main. Then you’d need to add this gvar to the LOCAL clause of that function’s precondition, and pass it down from main. Both of these infelicities ought to be remedied in a future release.
These axioms of separation logic are often useful, although generally it is the automation tactics (entailer, cancel) that apply them.

\[
\text{pred_ext: } P \vdash Q \rightarrow Q \vdash P \rightarrow P=Q.
\]

\[
\text{derives_refl: } P \vdash P.
\]

\[
\text{derives_trans: } P \vdash Q \rightarrow Q \vdash R \rightarrow P \vdash R.
\]

\[
\text{andp_right: } X \vdash P \rightarrow X \vdash Q \rightarrow X \vdash (P \& \& Q).
\]

\[
\text{andp_left1: } P \vdash R \rightarrow P \& \& Q \vdash R.
\]

\[
\text{andp_left2: } Q \vdash R \rightarrow P \& \& Q \vdash R.
\]

\[
\text{orp_left1: } P \vdash Q \rightarrow P \vdash Q \| R.
\]

\[
\text{orp_left2: } P \vdash R \rightarrow P \vdash Q \| R.
\]

\[
\text{exp_right: } \forall \{B: \text{Type}\} (x:B) (P: \text{mpred})(Q: B \rightarrow \text{mpred}),
\]

\[
P \vdash Q x \rightarrow P \vdash \text{EX } x:B, Q.
\]

\[
\text{exp_left: } \forall \{B: \text{Type}\} (P: B \rightarrow \text{mpred})(Q: \text{mpred}),
\]

\[
(\forall x, P \vdash Q) \rightarrow \text{EX } x:B, P \vdash Q.
\]

\[
\text{allp_left: } \forall \{B\} (P: B \rightarrow \text{mpred}) \times Q, P \times I Q \rightarrow \text{ALL } x:B, P \vdash Q.
\]

\[
\text{allp_right: } \forall \{B\} (P: \text{mpred})(Q: B \rightarrow \text{mpred}),
\]

\[
(\forall v, P \vdash Q v) \rightarrow P \vdash \text{ALL } x:B, Q.
\]

\[
\text{prop_left: } \forall (P: \text{Prop}) Q, (P \rightarrow (TT \vdash Q)) \rightarrow \text{!!P } \vdash Q.
\]

\[
\text{prop_right: } \forall (P: \text{Prop}) Q, P \rightarrow (Q \vdash \text{!!P}.
\]

\[
\text{not_prop_right: } \forall (P: \text{mpred})(Q: \text{Prop}), (Q \rightarrow (P \vdash FF)) \rightarrow P \vdash \text{!!} \neg Q.
\]

\[
\text{sepcon_assoc: } (P \ast Q) \ast R = P \ast (Q \ast R).
\]

\[
\text{sepcon_comm: } P Q, P \ast Q = Q \ast P.
\]

\[
\text{sepcon_andp_prop: } P \ast (!!Q \& \& R) = !!Q \& \& (P \ast R).
\]

\[
\text{derives_extract_prop: } (P \rightarrow Q \vdash R) \rightarrow \text{!!P } \& \& Q \vdash R.
\]

\[
\text{sepcon_derives: } P \vdash P' \rightarrow Q \vdash Q' \rightarrow P \ast Q \vdash P' \ast Q'.
\]
68 Obscure higher-order axioms

The wand \ast operator is “magic wand,” ewand \diamond is “existential magic wand,” and \triangleright is pronounced “later” and written \triangleright in Coq.

see PLCC, Chapter 19.

imp_andp_adjoint: $P \&\& Q \vdash R$ \iff $P \vdash (Q \rightarrow R)$.
wand_sepcon_adjoint: $P \ast Q \vdash R$ \iff $P \vdash Q \ast R$.
ewand_sepcon: $(P \ast Q) \diamond R = P \diamond (Q \diamond R)$.
ewand_TT_sepcon: $\forall (P Q R: A)$, $(P \ast Q) \&\& (R \rightarrow TT) \vdash (P \&\& (R \rightarrow TT)) \ast (Q \&\& (R \rightarrow TT))$.
exclude_elsewhere: $P \ast Q \vdash (P \&\& (Q \rightarrow TT)) \ast Q$.
ewand_conflict: $P \ast Q \vdash FF \rightarrow P \&\& (Q \rightarrow R) \vdash FF$

now_later: $P \vdash \triangleright P$.
later_K: $\triangleright (P \rightarrow Q) \vdash (\triangleright P \rightarrow \triangleright Q)$.
later_allp: $\forall T (F: T \rightarrow \text{mpred}), \triangleright (\text{ALL} x: T, F x) = \text{ALL} x: T, \triangleright (F x)$.
later_exp: $\forall T (F: T \rightarrow \text{mpred}), \text{EX} x: T, \triangleright (F x) \vdash \triangleright (\text{EX} x: T, F x)$.
later_exp': $\forall T (\text{any}: T) F, \triangleright (\text{EX} x: F x) = \text{EX} x: T, \triangleright (F x)$.
later_imp: $\triangleright (P \rightarrow Q) = (\triangleright P \rightarrow \triangleright Q)$.
loeb: $\triangleright P \vdash P \rightarrow TT \vdash P$.
later_sepcon: $\triangleright (P \ast Q) = \triangleright P \ast \triangleright Q$.
later_wand: $\triangleright (P \ast Q) = \triangleright P \ast \triangleright Q$.
later_ewand: $\triangleright (P \rightarrow Q) = (\triangleright P) \rightarrow (\triangleright Q)$.
69 Proving larg(ish) programs

When your program is not all in one .c file, see also Chapter 70. Whether or not your program is all in one .c file, you can prove the individual function bodies in separate .v files. This uses less memory, and (on a multicore computer with parallel make) saves time. To do this, put your API spec (up to the construction of Gprog in one file; then each semax_body proof in a separate file that imports the API spec.

Extraction of subordinate semax-goals. To ease memory pressure and recompilation time, it is often advisable to partition the proof of a function into several lemmas. Any proof state whose goal is a semax-term can be extracted as a stand-alone statement by invoking tactic semax_subcommand V G F. The three arguments are as in the statement of surrounding semax-body lemma, i.e. are of type varspecs, funspecs, and function.

The subordinate tactic mkConciseDelta V G F Δ can also be invoked individually, to concisely display the type context Δ as the application of a sequence of initializations to the host function’s func_tycontext.

The Freezer. A distinguishing feature of separation logic is the frame rule, i.e. the ability to modularly verify a statement w.r.t. its minimal resource footprint. Unfortunately, being phrased in terms of the syntactic program structure, the standard frame rule does not easily interact with forward symbolic execution as implemented by the Floyd tactics (and many other systems), as these continuously rearrange the associativity of statement sequencing to peel off the redex of the next forward, and (purposely) hide the program continuation as the abbreviation MORE_COMMANDS.

Resolving this conflict, Floyd’s freezer abstraction provides a means for flexible framing, by implementing a veil that opaquely hides selected items of a SEP clause from non-symbolic treatment by non-freezer tactics.
The freezer abstraction consists of two main tactics, `freeze N F` and `thaw F`, where \(N : list \text{nat} \) and \(F \) is a user-supplied (fresh) Coq name. The result of applying `freeze [i_1; \ldots; i_n] F` to a semax goal is to remove items \(i_1, \ldots, i_n \) from the precondition’s SEP clause, inserting the item `FRZL F` at the head of the SEP list, and adding a hypothesis \(F := abbreviate \) to Coq’s proof context.

The term `FRZL F` participates symbolically in all non-freezer tactics just like any other SEP item, so can in particular be canceled, and included in a function call’s frame. Unfolding a freezer is not tied to the associativity structure of program statements but can be achieved by invoking `thaw F`, which simply replaces `FRZL F` by the the list of \(F \)’s constituents. As multiple freezers can coexists and freezers can be arbitrarily nested, SEP-clauses \(R \) effectively contain forests of freezers, each constituent being thawable independently and freezer-level by freezer-level.

Wrapping single `forward` or `forward_call` commands in a freezer often speeds up the processing time noticably, as invocations of subordinate tactics `entailer`, `cancel`, etc. are supplied with smaller and more symbolic proof goals. In our experience, applying the freezer throughout the proof of an entire function body typically yields a speedup of about 30% on average with improvements of up to 55% in some cases, while also easing the memory pressure and freeing up valuable real estate on the user’s screen.

A more invasive implementation of a freezer-like abstraction would refine the `PROP(P) LOCAL(Q) SEP(R)` structure to terms of the form `PROP(P) LOCAL(Q) SEP(R) FR(H)` where \(H : list \text{mpred} \). Again, terms in \(H \) would be treated opaquely by all tactics, and freezing/thawing would correspond to transfer rules between \(R \) and \(H \). In either case, forward symbolic execution is reconciled with the frame rule, and the use of the mechanism is sound engineering practice as documentation of programmer’s insight is combined with performance improvements.
70 Separate compilation, semax_ext

What to do when your program is spread over multiple .c files. See progs/even.c and progs/odd.c for an example.

CompCert’s clightgen tool translates your .c file into a .v file in which each C-language identifier is assigned a positive number in the AST (Abstract Syntax Tree) representation. When you have several .c files, you need consistent numbering of the identifiers in the .v files. One way to achieve this is to run clightgen on all the .c files at once:

clightgen even.c odd.c

This generates even.v and odd.v with consistent names. (It’s not exactly separate compilation, but it will have to suffice for now.)

Now, you can do modular verification of modular programs. This is illustrated in,

progs/verif_evenodd_spec.v Specifications of the functions.
progs/verif_even.v Verification of even.c.
progs/verif_odd.v Verification of odd.c.

Linking of the final proofs is described by Stewart.¹.

¹Gordon Stewart, Verified Separate Compilation for C, PhD Thesis, Department of Computer Science, Princeton University, April 2015
71 Catalog of tactics / lemmas

Below is an alphabetic catalog of the major floyd tactics. In addition to short descriptions, the entries indicate whether a tactic (or tactic notation) is typically user-applied [u], primarily of internal use [i] or is expected to be used at development-time but unlikely to appear in a finished proof script [d]. We also mention major interdependencies between tactics, and their points of definition.

assert_PROP P (tactic; Chapter 42) Put the proposition P above the line, if it is provable from the current precondition.
cancel (tactic; page 62) Deletes identical spatial conjuncts from both sides of a base-level entailment.
data_at_conflict p (tactic) equivalent to field_at_conflict p nil.
deadvars! (tactic) Removes from the LOCAL block of the current precondition, any variables that are irrelevant to the rest of program execution. Fails if there is no such variable.
derives_refl (lemma) A ⊢ A. Useful after cancel to handle βη-equality; see page 62.
derives_refl’ (lemma) A = B → A ⊢ B.
drop_LOCAL n (tactic, where n : nat). Removes the nth entry of a the LOCAL block of a semax or ENTAIL precondition.
drop_LOCALs [i; j] Removes variables _i and _j from the LOCAL block of a semax or ENTAIL precondition.
entailer (tactic; page 63, page 29) Proves (lifted or base-level) entailments, possibly leaving a residue for the user to prove.
entailer! (tactic; page 63, page 29) Like entailer, but faster and more powerful—however, it sometimes turns a provable goal into an unprovable goal.
Exists v (tactic; Chapter 23) Instantiate an EX existential on the right-hand side of an entailment.
field_at_conflict p fld (tactic) Solves an entailment of the form
... * field_at sh t fld v1 p * ... * field_at sh t fld v2 p * ... ⊢_
based on the contradiction that the same field-assertion cannot *-separate. Usually invoked automatically by entailer (or entailer!)
to prove goals such as \(p \leftrightarrow q \). Needs to be able to prove (or compute) the fact that \(0 < \text{sizeof} \ (\text{nested_field_type} \ t \ \text{fld}) \); for data_at_conflict that’s equivalent to \(0 < \text{sizeof} \ t \).

forward (tactic; page 21) Do forward Hoare-logic proof through one C statement (assignment, break, continue, return).

forward_call ARGS (tactic; page 38) Forward Hoare-logic proof through one C function-call, where ARGS is a witness for the WITH clause of the funspec.

forward_for (tactic; page 81) Hoare-logic proof for the for statement, general case.

forward_for_simple_bound n Inv (tactic; page 79) When a for-loop has the form for \((\text{init}; \ i < \text{hi}; \ i++) \), where \(n \) is the value of \(\text{hi} \), and \(\text{Inv} \) is the loop invariant.

forward_if Q (tactic; page 25) Hoare-logic proof for the if statement, where \(Q \) may be omitted if at the end of a block, where the postcondition is already given.

forward_while Inv (tactic; Chapter 13) Forward Hoare-logic proof of a while loop, with loop invariant \(\text{Inv} \).

make_compspecs prog (tactic; page 13)

mk_varspecs prog (tactic; page 13)

mkConciseDelta V G F \(\Delta \) (tactic; page 107) Applicable to a proof state with a semax goal. Simplifies the \(\Delta \) component to the application of a sequence of initializations to the host function’s func_tycontext. Used to prepare the current proof goal for abstracting/factoring out as a separate lemma.

name i _i (tactic) Before start_function, suggest the name \(i \) for the Coq variable associated with the value of C global variable \(_i \).

semax_subcommand V G F (tactic) Applicable to a proof state with a semax goal. Extracts the current proof state as a stand-alone statement that can be copy-and pasted to a separate file. The three arguments should be copied from the statement of surrounding semax-body lemma: \(V : \text{varspecs}, G : \text{funspecs}, F : \text{function} \).

start_function (tactic; Chapter 9) Unpack the funspec’s pre- and post-condition into a Hoare triple describing the function body.

sublist_split (lemma; page 34) Break a sublist into the concatenation of two smaller sublists.
unfold_data_at (tactic; page 52) When t is a struct (or array) type, break apart $\text{data}_{\text{at}} \ sh \ t \ v \ p$ into a separating conjunction of its individual fields (or array elements).

unfold_field_at (tactic; page 52) Like unfold_data_at, but starts with $\text{field}_{\text{at}} \ sh \ t \ path \ v \ p$.

with_library (tactic; Chapter 63) Complete the funspecs by inserting stub specifications for all unspecified functions; and (if **Import** VST.floyd.library is done) adding standard specifications for malloc, free, exit.