
Verifiable C

Applying the Verified Software Toolchain

to C programs

Version 1.5
October 1, 2014

Andrew W. Appel
with Josiah Dodds

ii

Copyright c⃝ 2014 Andrew W. Appel

Contents
Verifiable C i
Contents ii
1 Getting started 4
2 Differences from PLCC 6
3 Memory predicates 7
4 Separation Logic 8
5 Mapsto and func_ptr 10
6 Shares 11
7 CompCert C 13
8 Verifiable C programming 14
9 32-bit Integers 15
10 Values 18
11 C types 19
12 C expression syntax 23
13 C operators 24
14 C expression evaluation 27
15 C type checking 29
16 Lifted separation logic 30
17 Canonical forms 32
18 Supercanonical forms 33
19 Go_lower 34
20 Normalize 35
21 Entailer 40
22 Cancel 41
23 The Hoare triple 42
24 Later 43
25 Specifying a function 44
26 Specifying all functions 46
27 Proving a function 47
28 Manipulating preconditions 51
29 The Frame rule 53

iii

30 Pointer comparisons 54
31 Structured data 55
32 Nested structs 59
33 Signed and unsigned integers 60
34 For loops 62
35 Nested Loads 64
36 Cygwin 69

4

1 Getting started
This summary reference manual is a brief guide to the VST Separation Logic
for the C language. The Verified Software Toolchain and the principles of
its program logics are described in the book:

Program Logics for Certified Compilers,
by Andrew W. Appel et al., Cambridge University Press, 2014.

TO INSTALL THE VST SEPARATION LOGIC FOR C LIGHT:

1. Get VST from vst.cs.princeton.edu/download, or get the bleeding-
edge version from the Subversion repository,
https://svn.princeton.edu/appel/vst.

2. Examine vst/compcert/VERSION to determine which version of
CompCert to download. The VST comes with a copy of the CompCert
front-end, in vst/compcert/, but (at present) CompCert’s clightgen
utility is not buildable from just the front-end distributed with VST.
You’ll need clightgen to translate .c files into .v files containing C
light abstract syntax. Thus it’s recommended to download and build
CompCert.1

3. Get CompCert from compcert.inria.fr/download.html and run ./con-
figure to list configurations. Select the correct option for your
machine, then run ./configure <option> followed by
make clightgen. Create a file vst/CONFIGURE containing a definition
for CompCert’s location; if vst and CompCert are installed in the same
parent directly, use COMPCERT=../compcert

If you have not installed CompCert, use the CompCert front-end
packaged with VST. Do not create a CONFIGURE file, and do:
cd vst/compcert; ./make

4. In the vst directory, make.

See also the file vst/BUILD_ORGANIZATION.
1Microsoft Windows / Cygwin users: See Chapter 36 of this manual.

1. GETTING STARTED 5

Within vst, the progs directory contains some sample C programs with their
verifications. The workflow is:

• Write a C program F .c.
• Run clightgen F .c to translate it into a Coq file F .v.
• Write a verification of F .v in a file such as verif-F .v. That latter file

will import both F .v and the VST Floyd2 program verification system,
floyd.proofauto.

LOAD PATHS. Interactive development environments (CoqIDE or Proof
General) will need their load paths properly initialized through command-
line arguments. Running make in vst creates a file .loadpath with the right
arguments. You can then do (for example),
coqide c̀at .loadpath` progs/verif-reverse.v

The verif-reverse.v example is described in PLCC Chapter 27. You might
find it interesting to open this in the IDE, using the command shown above,
and interactively step through the definitions and proofs.

Before doing proofs of your own, you may find it helpful to step through
this tutorial on C light expressions and assertions:
cd examples/floyd-tut; coqide tutorial.v
(this tutorial sets up its own load paths.)

2Named after Robert W. Floyd (1936–2001), a pioneer in program verification.

62 Differences from PLCC
The book Program Logics for Certified Compilers (Cambridge University
Press, early 2014) describes Verifiable C version 1.1. More recent VST
versions differ in the following ways from what the PLCC book describes:

• field-mapsto is now called field-at, and it is dependently typed; see
Chapter 31 of this manual.
• typed-mapsto is renamed to data-at, and last two arguments are

swapped.
• umapsto (“untyped mapsto”) no longer exists.
• mapsto π t v w now permits either (w =Vundef) or the value w

belongs to type t. This permits describing uninitialized locations,
i.e., mapsto-π t v = mapsto- π t v Vundef. See Chapter 31 of this
manual.
• Supercanonical form is now suggested; see Chapter 18 of this manual.
• For function calls, do not use forward (except to get advice about the

witness type); instead, use forward-call. See page 50.
• C functions may now fall through the end of the function body, and

this is (per the C semantics) equivalent to a return; statement.

73 Memory predicates
The axiomatic semantics (Hoare Logic of Separation) treats memories
abstractly. One never has a variable m of type memory. Instead, one uses
the Hoare Logic to manipulate predicates P on memories. Our type of
“memory predicates” is called mpred

Although intuitively mpred “feels like” the type memory → Prop, the
underlying semantic model is different; thus we keep the type mpred
abstract (opaque). See Program Logics for Certified Compilers (PLCC) for
more explanation.

On the type mpred we form a natural deduction system NatDed(mpred)
with conjuction &&, disjunction ∥ , etc.; a separation logic SepLog(mpred)
with separating conjunction ∗ and emp; and an indirection theory
Indir(mpred) with ▷ “later.”

The natural deduction system has a sequent (entailment) operator written
P |-- Q in Coq (written P ⊢ Q in print), where P,Q : mpred. We write
bientailment simply as P =Q since we assume axioms of extensionality.

84 Separation Logic (see PLCC Chapter 12)

Class NatDed (A: Type) := mkNatDed {
andp: A →A →A; (Notation &&)
orp: A →A →A; (Notation ∥)
exp: ∀{T:Type}, (T →A) →A; (Notation EX)
allp: ∀{T:Type}, (T →A) →A; (Notation ALL)
imp: A →A →A; (Notation -->, here written −→)
prop: Prop →A; (Notation !!)
derives: A →A →Prop; (Notation |--, here written ⊢)
pred-ext: ∀P Q, P⊢Q →Q⊢P →P=Q;
derives-refl: ∀P, P ⊢P;
derives-trans: ∀{P Q R}, P ⊢Q →Q ⊢R →P⊢R;
TT := !!True;
FF := !!False;
andp-right: ∀X P Q:A, X⊢P →X⊢Q →X⊢ (P&&Q);
andp-left1: ∀P Q R:A, P⊢R →P&&Q ⊢R;
andp-left2: ∀P Q R:A, Q⊢R →P&&Q ⊢R;
orp-left: ∀P Q R, P⊢R →Q⊢R → P||Q ⊢R;
orp-right1: ∀P Q R, P⊢Q →P⊢ Q||R;
orp-right2: ∀P Q R, P⊢R →P⊢ Q||R;
exp-right: ∀{B: Type}(x:B)(P:A)(Q: B→A), P⊢Q x →P⊢ EX x:B, Q;
exp-left: ∀{B: Type}(P:B→A)(Q:A), (∀ x, P x ⊢Q) →EX x:B,P ⊢Q;
allp-left: ∀{B}(P: B →A) x Q, P x⊢Q →ALL x:B,P⊢Q;
allp-right: ∀{B}(P: A)(Q:B→A), (∀ v, P⊢ Q v) →P⊢ ALL x:B,Q;
imp-andp-adjoint: ∀P Q R, P&&Q⊢R ↔ P⊢ (Q−→R);
prop-left: ∀ (P: Prop) Q, (P → (TT⊢Q)) → !!P ⊢Q;
prop-right: ∀ (P: Prop) Q, P → (Q⊢ !!P);
not-prop-right: ∀ (P:A)(Q:Prop), (Q → (P⊢FF))→ P⊢ !!(∼Q)

}.

4. SEPARATION LOGIC 9

Class SepLog (A: Type) {ND: NatDed A} := mkSepLog {
emp: A;
sepcon: A →A →A; (Notation ∗)
wand: A →A →A; (Notation -∗; here written −∗)
ewand: A →A →A; (no notation; here written −◦)
sepcon-assoc: ∀P Q R, (P∗Q)∗R = P∗(Q∗R);
sepcon-comm: ∀P Q, P∗Q = Q∗P;
wand-sepcon-adjoint: ∀ (P Q R: A), P∗Q⊢R ↔P ⊢Q−∗R;
sepcon-andp-prop: ∀P Q R, P∗(!!Q && R) = !!Q && (P∗R);
sepcon-derives: ∀P P’ Q Q’ : A, P⊢P’ →Q⊢Q’ →P∗Q ⊢P’∗Q’;
ewand-sepcon: ∀ (P Q R : A), (P∗Q)−◦ R = P −◦ (Q −◦ R);
ewand-TT-sepcon: ∀ (P Q R: A),

(P∗Q)&&(R−◦TT) ⊢ (P &&(R−◦TT))∗(Q && (R−◦TT));
exclude-elsewhere: ∀P Q: A, P∗Q ⊢ (P &&(Q−◦ TT))∗Q;
ewand-conflict: ∀P Q R, P∗Q⊢FF → P&&(Q−◦ R) ⊢FF

}.
Class Indir (A: Type) {ND: NatDed A} := mkIndir {

later: A →A; (Notation ▷)
now-later: ∀P: A, P ⊢▷P;
later-K: ∀P Q, ▷(P−→Q) ⊢ (▷P −→▷Q);
later-allp: ∀T (F: T→A), ▷(ALL x:T, F x) = ALL x:T, ▷(F x);
later-exp: ∀T (F: T→A), EX x:T, ▷(F x) ⊢▷(EX x: F x);
later-exp’: ∀T (any:T) F, ▷(EX x: F x) = EX x:T, ▷(F x);
later-imp: ∀P Q, ▷(P−→Q) = (▷P −→▷Q);
loeb: ∀P, ▷P ⊢P →TT ⊢P

}.
Class SepIndir (A: Type) {NA: NatDed A}{SA: SepLog A}{IA: Indir A} :=
mkSepIndir {
later-sepcon: ∀P Q, ▷(P ∗ Q) = ▷P ∗ ▷Q;
later-wand: ∀P Q, ▷(P −∗ Q) = ▷P −∗ ▷Q;
later-ewand: ∀P Q, ▷(P −◦ Q) = (▷P) −◦ (▷Q)

}.

105 Mapsto and func_ptr (see PLCC section 24)

Aside from the standard operators and axioms of separation logic, we have
exactly two primitive memory predicates:

Parameter address-mapsto:
memory-chunk →val → share → share →address →mpred.

Parameter func-ptr : funspec →val →mpred.

func-ptr φ v means that value v is a pointer to a function with
specification φ.

address-mapsto expresses what is typically written x y in separation
logic, that is, a singleton heap containing just value y at address x . But we
almost always use one of the following derived forms:

mapsto (π:share) (t:type) (v w: val) : mpred describes a singleton
heap with just one value w of (C-language) type t at address v, with
permission-share π.

mapsto- (π:share) (t:type) (v:val) : mpred describes an uninitialized
singleton heap with space to hold a value of type t at address v, with
permission-share π.

field-at (π: share) (t: type) (f: list ident) (w: reptype (nested\-field\-type2 f) (v: val) : mpred
describes a heap that holds just field fld of struct-value v, belonging to
struct-type t, containing value w. If type t describes a nested struct type,
then f can actually be a path of field selections that descends into the
nested structures. If f is the empty path, then the field is equivalent to
data-at. The type of w is a dependent type. Note: arguments w, v are
swapped compared to the PLCC book.

field-at-(π: share) (t: type) (fld: ident) (v: val) : mpred
is the corresponding uninitialized structure-field.

116 Shares (See PLCC Chapters 11,41)

The mapsto operator (and related operators) take a permission share,
here written π and typically written sh in Coq, expressing whether the
mapsto grants read permission, write permission, or some other fractional
permission.

Tsh =Share.top

Lsh

a'a

c
d

b

Rsh=Ews

Share.bot

b'

The top share, written Tsh or Share.top, gives total permission: to deallocate
any cells within the footprint of this mapsto, to read, to write.

Share.split Tsh = (Lsh,Rsh)
Share.split Lsh = (a, a′) Share.split Rsh = (b, b′)
a′⊕ b = c lub(c,Rsh) = a′⊕Rsh= d

Any share may be split into a left half and a right half. The left and right of
the top share are given distinguished names Lsh, Rsh.

The right-half share of the top share (or any share containing it such as d)
is sufficient to grant write permission to the data: “the right share is the
write share.” A thread of execution holding only Lsh—or subshares of it
such as a, a′—can neither read or write the object, but such shares are not
completely useless: holding any nonempty share prevents other threads
from deallocating the object.

Any subshare of Rsh, in fact any share that overlaps Rsh, grants read
permission to the object. Overlap can be tested using the glb (greatest
lower bound) operator.

6. SHARES 12

Whenever (mapsto π t v w) holds, then the share π must include at least
a read share, thus this give permission to load memory at address v to get
a value w of type t.

To make sure π has enough permission to write (i.e., Rsh ⊏ π, we can say
writable-share π : Prop.

Memory obtained from malloc comes with the top share Tsh. Writable
extern global variables and stack-allocated addressable locals (which of
course must not be deallocated) come with the “extern writable share” Ews
which is equal to Rsh. Read-only globals come with a half-share of Rsh.

Sequential programs usually have little need of any shares except the Tsh
and Ews. However, many function specifications can be parameterized over
any share, and this sort of generalized specification makes the functions
usable in more contexts.

In C it is undefined to test deallocated pointers for equality or inequal-
ities, so the Hoare-logic rule for pointer comparison also requires some
permission-share; see page 54.

137 CompCert C
The CompCert verified C compiler translates standard C source programs
into an abstract syntax for CompCert C, and then translates that into
abstract syntax for C light. Then VST Separation Logic is applied to
the C light abstract syntax. C light programs proved correct using the VST
separation logic can then be compiled (by CompCert) to assembly language.

C light syntax is defined by these Coq files from CompCert:

Integers. 32-bit (and 8-bit, 16-bit, 64-bit) signed/unsigned integers.
Floats. IEEE floating point numbers.
Values. The val type: integer + float + pointer + undefined.
AST. Generic support for abstract syntax.
Ctypes. C-language types and structure-field-offset computations.
Cop. Semantics of C-language arithmetic operators.
Clight. Abstract syntax of C-light expressions, statements, and functions.
veric.expr. (from VST, not CompCert) Semantics of expression evaluation.

Some of the important types and operators are described over the next few
pages.

148 Verifiable C programming See PLCC Chapter
22

In writing Verifiable C programs you must:

• Make each dereference into a top level expression (PLCC page 143)
• Make most pointer comparisons into a top level expression (PLCC

page 145)
• Remove casts between int and pointer types (result in values that

crash if used)

The clightgen tool automatically:

• Factors function calls into top level expressions
• Factors logical and/or operators into if statements (to capture short

circuiting behavior)

Proof automation detects these two transformations and processes them
with a single tactic application.

If your program uses malloc or free, you must declare and specify these
as external functions. If you don’t want to keep track of the size of each
allocated object, you may want to change the interface of the free function.
We do this in our example definitions of malloc and free in progs/queue.c
and their specifications in progs/verif_queue.v.

159 32-bit Integers (compcert/lib/Integers.v)

The VST program logic uses CompCert’s 32-bit integer type.

Inductive comparison := Ceq | Cne | Clt | Cle | Cgt | Cge.
Definition wordsize: nat := 32. (∗ also instantiations for 8, 16, 64 ∗)
Definition modulus : Z := two-power-nat wordsize.
Definition half-modulus : Z := modulus / 2.
Definition max-unsigned : Z := modulus -1.
Definition max-signed : Z := half-modulus -1.
Definition min-signed : Z := -half-modulus.

Parameter int : Type.
Parameter unsigned : int →Z.
Parameter signed : int →Z.
Parameter repr : Z → int.

Definition zero := repr 0.

Definition eq (x y: int) : bool.
Definition lt (x y: int) : bool.
Definition ltu (x y: int) : bool.
Definition neg (x: int): int := repr (- unsigned x).
Definition add (x y: int): int := repr (unsigned x + unsigned y).
Definition sub (x y: int): int := repr (unsigned x -unsigned y).
Definition mul (x y: int): int := repr (unsigned x ∗ unsigned y).
Definition divs (x y: int) : int.
Definition mods (x y: int) : int.
Definition divu (x y: int) : int.
Definition modu (x y: int) : int.
Definition and (x y: int): int := bitwise-binop andb x y.
Definition or (x y: int): int := bitwise-binop orb x y.
Definition xor (x y: int) : int := bitwise-binop xorb x y.
Definition not (x: int) : int := xor x mone.
Definition shl (x y: int): int.
Definition shru (x y: int): int.

9. 32-BIT INTEGERS 16

Definition shr (x y: int): int.
Definition rol (x y: int) : int.
Definition ror (x y: int) : int.
Definition rolm (x a m: int): int.
Definition cmp (c: comparison) (x y: int) : bool.
Definition cmpu (c: comparison) (x y: int) : bool.

Lemma eq-dec: ∀ (x y: int), {x = y} + {x <> y}.
Theorem unsigned-range: ∀ i, 0 <= unsigned i < modulus.
Theorem unsigned-range-2: ∀ i, 0 <= unsigned i <= max-unsigned.
Theorem signed-range: ∀ i, min-signed <= signed i <= max-signed.
Theorem repr-unsigned: ∀ i, repr (unsigned i) = i.
Lemma repr-signed: ∀ i, repr (signed i) = i.
Theorem unsigned-repr:
∀ z, 0 <= z <= max-unsigned →unsigned (repr z) = z.

Theorem signed-repr:
∀ z, min-signed <= z <= max-signed → signed (repr z) = z.

Theorem signed-eq-unsigned:
∀x, unsigned x <= max-signed → signed x = unsigned x.

Theorem unsigned-zero: unsigned zero = 0.
Theorem unsigned-one: unsigned one = 1.
Theorem signed-zero: signed zero = 0.

Theorem eq-sym: ∀x y, eq x y = eq y x.
Theorem eq-spec: ∀ (x y: int), if eq x y then x = y else x <> y.
Theorem eq-true: ∀x, eq x x = true.
Theorem eq-false: ∀x y, x <> y →eq x y = false.

Theorem add-unsigned: ∀x y, add x y = repr (unsigned x + unsigned y).
Theorem add-signed: ∀x y, add x y = repr (signed x + signed y).
Theorem add-commut: ∀x y, add x y = add y x.
Theorem add-zero: ∀x, add x zero = x.
Theorem add-zero-l: ∀x, add zero x = x.
Theorem add-assoc: ∀x y z, add (add x y) z = add x (add y z).

9. 32-BIT INTEGERS 17

Theorem neg-repr: ∀ z, neg (repr z) = repr (-z).
Theorem neg-zero: neg zero = zero.
Theorem neg-involutive: ∀x, neg (neg x) = x.
Theorem neg-add-distr: ∀x y, neg(add x y) = add (neg x) (neg y).

Theorem sub-zero-l: ∀x, sub x zero = x.
Theorem sub-zero-r: ∀x, sub zero x = neg x.
Theorem sub-add-opp: ∀x y, sub x y = add x (neg y).
Theorem sub-idem: ∀x, sub x x = zero.
Theorem sub-add-l: ∀x y z, sub (add x y) z = add (sub x z) y.
Theorem sub-add-r: ∀x y z, sub x (add y z) = add (sub x z) (neg y).
Theorem sub-shifted: ∀x y z, sub (add x z) (add y z) = sub x y.
Theorem sub-signed: ∀x y, sub x y = repr (signed x -signed y).

Theorem mul-commut: ∀x y, mul x y = mul y x.
Theorem mul-zero: ∀x, mul x zero = zero.
Theorem mul-one: ∀x, mul x one = x.
Theorem mul-assoc: ∀x y z, mul (mul x y) z = mul x (mul y z).
Theorem mul-add-distr-l: ∀x y z, mul (add x y) z = add (mul x z) (mul y z).
Theorem mul-signed: ∀x y, mul x y = repr (signed x ∗ signed y).

and many more axioms for the bitwise operators, shift operators, signed/un-
signed division and mod operators.

1810 Values (compcert/common/Values.v)

Definition block : Type := positive.

Inductive val: Type :=
| Vundef: val
| Vint: int →val
| Vlong: int64 →val
| Vfloat: float →val
| Vptr: block → int →val.

Vundef is the undefined value—found, for example, in an uninitialized local
variable.

Vint(i) is an integer value, where i is a CompCert 32-bit integer.

Vfloat(f) is an floating-point value, where f is a Flocq 64-bit floating-point
number.

Vptr b z is a pointer value, where b is an abstract block number and z
is an offset within that block. Different malloc operations, or different
extern global variables, or stack-memory-resident local variables, will have
different abstract block numbers. Pointer arithmetic must be done within
the same abstract block, with (Vptr b z) + (Vint i) = Vptr b (z + i). Of
course, the C-language + operator first multiplies i by the size of the
array-element that Vptr b z points to.

1911 C types (compcert/cfrontend/Ctypes.v)

Inductive signedness := Signed | Unsigned.
Inductive intsize := I8 | I16 | I32 | IBool.
Inductive floatsize := F32 | F64.

Record attr : Type := mk-attr {
attr-volatile: bool

}.
Definition noattr := {| attr-volatile := false |}.

Inductive type : Type :=
| Tvoid: type
| Tint: intsize → signedness →attr → type
| Tlong: signedness →attr → type
| Tfloat: floatsize →attr → type
| Tpointer: type →attr → type
| Tarray: type →Z →attr → type
| Tfunction: typelist → type → type
| Tstruct: ident →fieldlist →attr → type
| Tunion: ident →fieldlist →attr → type
| Tcomp-ptr: ident →attr → type

with typelist : Type :=
| Tnil: typelist
| Tcons: type → typelist → typelist

with fieldlist : Type :=
| Fnil: fieldlist
| Fcons: ident → type →fieldlist →fieldlist.

Definition typeconv (ty: type) : type :=
match ty with
| Tint (I8 | I16 | IBool) -a ⇒ Tint I32 Signed a
| Tarray t sz a ⇒ Tpointer t a
| Tfunction --⇒ Tpointer ty noattr

11. C TYPES 20

| -⇒ ty
end.

Fixpoint alignof (t: type) : Z :=
match t with
| Tint I8 --⇒ 1
| Tint I16 --⇒ 2
| Tint I32 --⇒ 4
| Tlong --⇒ 8
| Tfloat F32 -⇒ 4
| Tfloat F64 -⇒ 8
| Tpointer --⇒ 4
... et cetera
end.

(∗∗ Size of a type, in bytes. ∗)

Fixpoint sizeof (t: type) : Z :=
match t with
| Tint I8 --⇒ 1
| Tint I16 --⇒ 2
| Tint I32 --⇒ 4
| Tlong --⇒ 8
| Tfloat F32 -⇒ 4
| Tfloat F64 -⇒ 8
| Tpointer --⇒ 4
... et cetera
end.

Lemma sizeof-pos: ∀ t, sizeof t > 0.

Definition field-offset (id: ident) (fld: fieldlist) : res Z.

Fixpoint field-type (id: ident) (fld: fieldlist) {struct fld} : res type.

11. C TYPES 21

Inductive mode: Type :=
| By-value: memory-chunk →mode
| By-reference: mode
| By-copy: mode
| By-nothing: mode.

Definition access-mode (ty: type) : mode :=
match ty with
| Tint I8 Signed -⇒ By-value Mint8signed
| Tint I8 Unsigned -⇒ By-value Mint8unsigned
| Tint I16 Signed -⇒ By-value Mint16signed
| Tint I16 Unsigned -⇒ By-value Mint16unsigned
| Tint I32 --⇒ By-value Mint32
| Tint IBool --⇒ By-value Mint8unsigned
| Tlong --⇒ By-value Mint64
| Tfloat F32 -⇒ By-value Mfloat32
| Tfloat F64 -⇒ By-value Mfloat64
| Tvoid ⇒ By-nothing
| Tpointer --⇒ By-value Mint32
| Tarray ---⇒ By-reference
| Tfunction --⇒ By-reference
| Tstruct ---⇒ By-copy
| Tunion ---⇒ By-copy
| Tcomp-ptr --⇒ By-nothing

end.

11. C TYPES 22

COMPCERT handles self-referential structure types in the following way that
deserves at least some explanation, not provided here:

Fixpoint unroll-composite (cid: ident) (comp: type) (ty: type) : type :=
match ty with
| Tvoid ⇒ ty
| Tint ---⇒ ty
| Tlong --⇒ ty
| Tfloat --⇒ ty
| Tpointer t1 a ⇒ Tpointer (unroll-composite t1) a
| Tarray t1 sz a ⇒ Tarray (unroll-composite t1) sz a
| Tfunction t1 t2 ⇒

Tfunction (unroll-composite-list t1) (unroll-composite t2)
| Tstruct id fld a ⇒

if ident-eq id cid then ty
else Tstruct id (unroll-composite-fields fld) a

| Tunion id fld a ⇒
if ident-eq id cid then ty
else Tunion id (unroll-composite-fields fld) a

| Tcomp-ptr id a ⇒
if ident-eq id cid then Tpointer comp a else ty

end

with unroll-composite-list cid comp(tl: typelist) : typelist := ...
with unroll-composite-fields cid comp (fld: fieldlist) : fieldlist := ...

Lemma alignof-unroll-composite:
∀cid comp ty, alignof (unroll-composite cid comp ty) = alignof ty.

Lemma sizeof-unroll-composite:
∀cid comp ty, sizeof (unroll-composite cid comp ty) = sizeof ty.

2312 C expression syntax
(compcert/cfrontend/Clight.v)

Inductive expr : Type :=
(∗ 1 ∗) | Econst-int: int → type →expr
(∗ 1.0 ∗) | Econst-float: float → type →expr
(∗ 1L ∗) | Econst-long: int64 → type →expr
(∗ x ∗) | Evar: ident → type →expr
(∗ x ∗) | Etempvar: ident → type →expr
(∗ ∗e ∗) | Ederef: expr → type →expr
(∗ &e ∗) | Eaddrof: expr → type →expr
(∗ ∼e ∗) | Eunop: unary-operation →expr → type →expr
(∗ e+e ∗) | Ebinop: binary-operation →expr →expr → type →expr
(∗ (int)e ∗) | Ecast: expr → type →expr
(∗ e.f ∗) | Efield: expr → ident → type →expr.

Definition typeof (e: expr) : type :=
match e with
| Econst-int -ty ⇒ ty
| Econst-float -ty ⇒ ty
| Evar -ty ⇒ ty
| ... et cetera.

2413 C operators (compcert/cfrontend/Cop.v)

Function bool-val (v: val) (t: type) : option bool :=
match classify-bool t with
| bool-case-i ⇒

match v with
| Vint n ⇒ Some (negb (Int.eq n Int.zero))
| -⇒ None
end

| bool-case-f ⇒
match v with
| Vfloat f ⇒ Some (negb (Float.cmp Ceq f Float.zero))
| -⇒ None
end

| bool-case-p ⇒
match v with
| Vint n ⇒ Some (negb (Int.eq n Int.zero))
| Vptr b ofs ⇒ Some true
| -⇒ None
end

| bool-default ⇒ None
end.

Function sem-neg (v: val) (ty: type) : option val :=
match classify-neg ty with
| neg-case-i sg ⇒

match v with
| Vint n ⇒ Some (Vint (Int.neg n))
| -⇒ None
end

| neg-case-f ⇒
match v with
| Vfloat f ⇒ Some (Vfloat (Float.neg f))
| -⇒ None
end

13. C OPERATORS 25

| neg-default ⇒ None
end.

Function sem-add (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify-add t1 t2 with
| add-case-ii sg ⇒ (∗∗r integer addition ∗)

match v1, v2 with
| Vint n1, Vint n2 ⇒ Some (Vint (Int.add n1 n2))
| -, -⇒ None
end

| add-case-ff ⇒ (∗∗r float addition ∗)
match v1, v2 with
| Vfloat n1, Vfloat n2 ⇒ Some (Vfloat (Float.add n1 n2))
| -, -⇒ None
end

| add-case-if sg ⇒ (∗∗r int plus float ∗)
match v1, v2 with
| Vint n1, Vfloat n2 ⇒ Some (Vfloat (Float.add (cast-int-float sg n1) n2))
| -, -⇒ None
end

| ... (cases omit ted)
| add-case-ip ty -⇒ (∗∗r integer plus pointer ∗)

match v1,v2 with
| Vint n1, Vptr b2 ofs2 ⇒

Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1)))
| -, -⇒ None
end

| add-default ⇒ None
end.

Function sem-sub (v1:val) (t1:type) (v2: val) (t2:type) : option val.
Function sem-mul (v1:val) (t1:type) (v2: val) (t2:type) : option val.
Function sem-div (v1:val) (t1:type) (v2: val) (t2:type) : option val.
Function sem-mod (v1:val) (t1:type) (v2: val) (t2:type) : option val.
Function sem-and (v1:val) (t1:type) (v2: val) (t2:type) : option val.

13. C OPERATORS 26

Function sem-cmp (c:comparison)
(v1: val) (t1: type) (v2: val) (t2: type)
(m: mem): option val :=

match classify-cmp t1 t2 with
| cmp-case-ii Signed ⇒

match v1,v2 with
| Vint n1, Vint n2 ⇒ Some (Val.of-bool (Int.cmp c n1 n2))
| -, -⇒ None
end

| ... (many more cases)
end.

Definition sem-binary-operation
(op: binary-operation)
(v1: val) (t1: type) (v2: val) (t2:type)
(m: mem): option val :=

match op with
| Oadd ⇒ sem-add v1 t1 v2 t2
| Osub ⇒ sem-sub v1 t1 v2 t2
| Omul ⇒ sem-mul v1 t1 v2 t2
| Omod ⇒ sem-mod v1 t1 v2 t2
| Odiv ⇒ sem-div v1 t1 v2 t2
| Oand ⇒ sem-and v1 t1 v2 t2
| Oor ⇒ sem-or v1 t1 v2 t2
| Oxor ⇒ sem-xor v1 t1 v2 t2
| Oshl ⇒ sem-shl v1 t1 v2 t2
| Oshr ⇒ sem-shr v1 t1 v2 t2
| Oeq ⇒ sem-cmp Ceq v1 t1 v2 t2 m
| One ⇒ sem-cmp Cne v1 t1 v2 t2 m
| Olt ⇒ sem-cmp Clt v1 t1 v2 t2 m
| Ogt ⇒ sem-cmp Cgt v1 t1 v2 t2 m
| Ole ⇒ sem-cmp Cle v1 t1 v2 t2 m
| Oge ⇒ sem-cmp Cge v1 t1 v2 t2 m
end.

2714 C expression evaluation (vst/veric/expr.v)

Definition eval-id (id: ident) (ρ: environ).
(∗ look up the tempory variable `̀ id’’ in ρ ∗)

Definition eval-cast (t t’: type) (v: val) : val.
(∗ cast value v from type t to type t’, but beware! There are

be three types involved, if you include the native type of v. ∗)

Definition eval-unop (op: Cop.unary-operation) (t1 : type) (v1 : val) : val.

Definition eval-binop (op: Cop.binary-operation)
(t1 t2 : type) (v1 v2: val) : val.

Definition force-ptr (v: val) : val :=
match v with Vptr l ofs ⇒ v | -⇒ Vundef end.

Definition eval-struct-field (delta: Z) (v: val) : val.
(∗ offset the pointer-value v by delta ∗)

Definition eval-field (ty: type) (fld: ident) (v: val) : val.
(∗ calculate the lvalue of (but do not fetch/dereference!)

a structure/union field of value v ∗)

Definition eval-var (id:ident) (ty: type) (rho: environ) : val.
(∗ Get the lvalue (address of) an addressable local variable

(if there is one of that name) or else a global variable ∗)

Definition deref-noload (ty: type) (v: val) : val.
(∗ For By-reference types such as arrays that dereference

without actually fetching ∗)
match access-mode ty with By-reference ⇒ v | -⇒ Vundef end.

14. C EXPRESSION EVALUATION 28

Fixpoint eval-expr (e: expr) : environ →val :=
match e with
| Econst-int i ty ⇒ (̀Vint i)
| Econst-float f ty ⇒ (̀Vfloat f)
| Etempvar id ty ⇒ eval-id id
| Eaddrof a ty ⇒ eval-lvalue a
| Eunop op a ty ⇒ (̀eval-unop op (typeof a)) (eval-expr a)
| Ebinop op a1 a2 ty ⇒

(̀eval-binop op (typeof a1) (typeof a2))
(eval-expr a1) (eval-expr a2)

| Ecast a ty ⇒ (̀eval-cast (typeof a) ty) (eval-expr a)
| Evar id ty ⇒ (̀deref-noload ty) (eval-var id ty)
| Ederef a ty ⇒ (̀deref-noload ty) (f̀orce-ptr (eval-expr a))
| Efield a i ty ⇒ (̀deref-noload ty)

((̀eval-field (typeof a) i) (eval-lvalue a))
end

with eval-lvalue (e: expr) : environ →val :=
match e with
| Evar id ty ⇒ eval-var id ty
| Ederef a ty ⇒ f̀orce-ptr (eval-expr a)
| Efield a i ty ⇒ (̀eval-field (typeof a) i) (eval-lvalue a)
| -⇒ `Vundef
end.

2915 C type checking (See PLCC Chapter 25)

Ideally, you will never notice the typechecker, but it may occasion-
ally generate side conditions that can not be solved automatically. If
you get a proof goal from the typechecker, it will be an entailment
P ⊢denote-tc-assert (. . .). PLCC Chapter Chapter 26 discusses what you
can do to solve these goals.

If you are asked to prove an entailment where the typechecking condition
evaluates to False, this is because your program is not written in Verifiable
C. You may need to perform some local transformations on your C program
in order to proceed. We listed these transformations on page 14.

The type-context will always be visible in your proof in a line that looks
like Delta := abbreviate : tycontext. The abbreviate hides the implemen-
tation of the type context (which is generally large and uninteresting).
The query-context tactic shows the result of looking up a variable in
a typecontext. Applying query-context Delta -p. will add hypothesis
QUERY : (temp-types Delta) ! -p = Some (tptr t-struct-list, true). This
means that in Delta, -p is a temporary variable with type tptr t-struct-list
and that it is known to be initialized.

3016 Lifted separation logic (See PLCC Chapter 21)

Assertions in our Hoare triple of separation are presented as env→mpred,
that is, functions from environment to memory-predicate, using our natural
deduction system NatDed(mpred) and separation logic SepLog(mpred).

Given a separation logic over a type B of formulas, and an arbitrary type A,
we can define a lifted separation logic over functions A→ B. The operations
are simply lifted pointwise over the elements of A. Let P,Q : A→ B, let
R : T → A→ B then define,

(P &&Q) : A→ B := fun a ⇒ Pa &&Qa
(P ∥Q) : A→ B := fun a ⇒ Pa ∥Qa

(∃x .R(x)) : A→ B := fun a ⇒ ∃x . Rxa
(∀x .R(x)) : A→ B := fun a ⇒ ∀x . Rxa
(P −→Q) : A→ B := fun a ⇒ Pa −→Qa
(P ⊢Q) : A→ B := ∀a. Pa ⊢Qa
(P ∗Q) : A→ B := fun a ⇒ Pa ∗Qa
(P −∗Q) : A→ B := fun a ⇒ Pa −∗Qa

In Coq we formalize the typeclass instances LiftNatDed, LiftSepLog,
etc., as shown below. For a type B, whenever NatDed B and SepLog B
(and so on) have been defined, the lifted instances NatDed (A→B) and
SepLog (A→B) (and so on) are automagically provided by the typeclass
system.

Instance LiftNatDed(A B: Type){ND: NatDed B}: NatDed (A→B):=
mkNatDed (A →B)

(∗andp∗) (fun P Q x ⇒ andp (P x) (Q x))
(∗orp∗) (fun P Q x ⇒ orp (P x) (Q x))
(∗exp∗) (fun {T} (F: T →A →B) (a: A) ⇒ exp (fun x ⇒ F x a))
(∗allp∗) (fun {T} (F: T →A →B) (a: A) ⇒ allp (fun x ⇒ F x a))
(∗imp∗) (fun P Q x ⇒ imp (P x) (Q x))
(∗prop∗) (fun P x ⇒ prop P)
(∗derives∗) (fun P Q ⇒ ∀x, derives (P x) (Q x))
- - - - - - - - - - - - - - - - - -.

16. LIFTED SEPARATION LOGIC 31

Instance LiftSepLog (A B: Type) {NB: NatDed B}{SB: SepLog B}
: SepLog (A →B).

apply (mkSepLog (A →B) -(fun ρ ⇒ emp)
(fun P Q ρ ⇒ P ρ ∗ Q ρ) (fun P Q ρ ⇒ P ρ -∗ Q ρ)).

(∗ fill in proofs here ∗)

In particular, if P and Q are functions of type environ→mpred then we can
write P ∗Q, P &&Q, and so on.

Consider this assertion:

fun ρ ⇒ mapsto π tint (eval-id -x ρ) (eval-id -y ρ)
∗ mapsto π tint (eval-id -u ρ) (Vint Int.zero)

which might appear as the precondition of a Hoare triple. It represents
(x y) ∗ (u 0) written in informal separation logic, where x , y, u are
C-language variables of integer type. Because it can be inconvenient to
manipulate explicit lambda expressions and explicit environment variables
ρ, we may write it in lifted form,

(̀mapsto π tint) (eval-id -x) (eval-id -y)
∗ (̀mapsto π tint) (eval-id -u) (̀Vint Int.zero)

Each of the first two backquotes lifts a function from type val→val→mpred
to type (environ→val)→ (environ→val)→ (environ→mpred), and the third
one lifts from val to environ→val.

3217 Canonical forms (See PLCC section 26)

We write a canonical form of an assertion as,

PROP(P0; P1; . . . , Pl−1) LOCAL(Q0;Q1; . . . ,Qm−1) SEP(R0; R1; . . . , Rn−1)

The Pi : Prop are Coq propositions—these are independent of the program
variables and the memory. The Q i : environ→ Prop are local—they depend
on program variables but not on memory. The Ri : environ → mpred are
assertions of separation logic, which may depend on both program variables
and memory.

The PROP/LOCAL/SEP form is defined formally as,

Definition PROPx (P: list Prop) (Q: assert) :=
andp (prop (fold-right and True P)) Q.

Notation "’PROP’ (x ; .. ; y) z" :=
(PROPx (cons x%type .. (cons y%type nil) ..) z) (at level 10) : logic.

Notation "’PROP’ () z" := (PROPx nil z) (at level 10) : logic.

Definition LOCALx (Q: list (environ →Prop)) (R: assert) :=
andp (local (fold-right (ànd) (`True) Q)) R.

Notation " ’LOCAL’ (x ; .. ; y) z" :=
(LOCALx (cons x%type .. (cons y%type nil) ..) z) (at level 9) : logic.

Notation " ’LOCAL’ () z" := (LOCALx nil z) (at level 9) : logic.

Definition SEPx (R: list assert) : assert := fold-right sepcon emp R.

Notation " ’SEP’ (x ; .. ; y)" :=
(SEPx (cons x%logic .. (cons y%logic nil) ..)) (at level 8) : logic.

Notation " ’SEP’ () " := (SEPx nil) (at level 8) : logic.
Notation " ’SEP’ () " := (SEPx nil) (at level 8) : logic.

Thus, PROP(P0; P1)LOCAL(Q0;Q1)SEP (R0; R1) is equivalent to prop P0 ∧
prop P1 &&`propQ0 &&`propQ1 && (R0 ∗ R1).

3318 Supercanonical forms
A canonical form PROP(P⃗)LOCAL(Q⃗)SEP (R⃗) is supercanonical if,

• every element of Q⃗ has the form (̀eq V) (eval-id i), where V is any
Coq expression of type val and i is βη-equivalent to a constant (a
ground term of type ident).
• every element of R is either

(̀E) where E is a Coq expression of type mpred, or
(̀F) (evalvar i t) where F is a Coq expression of type val→mpred

and i is βη-equivalent to a constant.

When assertions (preconditions of semax) are kept in supercanonical form,
the forward tactic for symbolic execution runs much faster. That is,

• In VST 1.3, forward through ordinary assignment statements (not
loads/stores) is up to 10 times faster for supercanonical preconditions
than for ordinary (canonical) preconditions.
• In future versions of VST, forward through other kinds of statements

will be faster supercanonical preconditions.
• Future versions of the forward tactic may require the precondition to

be in supercanonical form.

3419 Go_lower (See PLCC Chapter 26)

An entailment PROP(P⃗)LOCAL(Q⃗)SEP (R⃗) ⊢ PROP(P⃗ ′)LOCAL(Q⃗′)SEP (R⃗′) is
a sequent in our lifted separation logic; each side has type environ→mpred.
By definition of the lifted entailment ⊢ it means exactly,
∀ρ. PROP(P⃗)LOCAL(Q⃗)SEP (R⃗)ρ ⊢ PROP(P⃗ ′)LOCAL(Q⃗′)SEP (R⃗′)ρ.
There are two ways to prove such an entailment: Explicitly introduce
ρ (descend into an entailment on mpred) and unfold the PROP/LOCAL/SEP
form; or stay in canonical form and rewrite in the lifted logic. Either way
may be appropriate; this chapter describes how to descend. The go-lower
tactic, described on this page, is rarely called directly; it is the first step of
the entailer tactic (page 40) when applied to lifted entailments.

The tactic go-lower tactic does the following:

1. intros ?rho, as described above.
2. If the first conjunct of the left-hand-side LOCALs is tc-environ ∆ ρ,

move it above the line; this be useful in step 6.
3. Unfold definitions for canonical forms (PROPx LOCALx SEPx), ex-

pression evaluation (eval-exprlist eval-expr eval-lvalue cast-expropt
eval-cast eval-binop eval-unop), casting (eval-cast classify-cast) type-
checking (tc-expropt tc-expr tc-lvalue typecheck-expr typecheck-lvalue
denote-tc-assert), function postcondition operators (function-body-ret-assert
make-args’ bind-ret get-result1 retval), lifting operators (liftx LiftEnviron
Tarrow Tend lift-S lift-T lift-prod lift-last lifted lift-uncurry-open
lift-curry local lift lift0 lift1 lift2 lift3).

4. Simplify by simpl.
5. Rewrite by the rewrite-hint environment go-lower, which contains

just a very few rules to evaluate certain environment lookups.
6. Recognize local variables.

Local variables that appear in the lifted canonical form as (eval-id -x) will
be replaced by Coq variables x, provided that: (1) Q⃗ includes a clause of
the form (tc-environ ∆), and (2) there is a hypothesis name x -x “above
the line.” (See PLCC section 26). In addition, a typechecking hypothesis for
x will be introduced above the line.

35

20 Normalize
The normalize tactic performs autorewrite with norm and several other
transformations. Many of the simplifications performed by normalize on
entailments (whether lifted or unlifted) can be done more efficiently and
systematically by entailer. However, on Hoare triples, entailer does not
apply, and normalize is quite appropriate.

The norm rewrite-hint database uses several sets of rules.

Generic separation-logic simplifications.

P ∗ emp= P emp ∗ P = P P &&⊤= P ⊤&& P = P

(EX x : A, P) ∗Q = EX x : A, P ∗Q P ∗ (EX x : A,Q) = EX x : A, P ∗Q

(EX x : A, P)&&Q = EX x : A, P &&Q P && (EX x : A,Q) = EX x : A, P &&Q

P ∗(!!Q && R) =!!Q && (P ∗R) (!!Q && P)∗R=!!Q && (P ∗R) P &&⊥=⊥

⊥&& P =⊥ P ∗⊥=⊥ ⊥∗ P =⊥ P → (!!P &&Q =Q)

P → (!!P =⊤) P && P = P (EX_ : _, P) = P local ‘True=⊤

Unlifting.

‘ f ρ = f [when f has arity 0] ‘ f a1 ρ = f (a1 ρ) [when f has arity 1]

‘ f a1 a2 ρ = f (a1 ρ) (a2 ρ) [when f has arity 2, etc.]

local P ρ =!!(P ρ) (P ∗Q)ρ = Pρ ∗Qρ (P &&Q)ρ = Pρ&&Qρ

(!!P)ρ =!!P !!(P ∧Q) =!!P && !!Q

(EX x : A, P x)ρ = EX x : A, P x ρ ‘(EX x : B, P x) = EX x : B, ‘(P x))

‘(P ∗Q) = ‘P ∗ ‘Q ‘(P &&Q) = ‘P && ‘Q

20. NORMALIZE 36

Pulling nonspatial propositions out of spatial ones.

local P && !!Q =!!Q && local P

local P && (!!Q && R) =!!Q && (local P && R)

(local P && Q) ∗ R= local P && (Q ∗ R)

Q ∗ (local P && R) = local P && (Q ∗ R)

Canonical forms.

local Q1 && (PROP(P⃗)LOCAL(Q⃗)SEP(R⃗)) = PROP(P⃗)LOCAL(Q1; Q⃗)SEP(R⃗)

PROPP⃗LOCALQ⃗SEP(!!P1; R⃗) = PROP(P1; P⃗)LOCAL(Q⃗)SEP(R⃗)

PROP(P⃗)LOCAL(Q⃗)SEP(localQ1; R⃗) = PROP(P⃗)LOCAL(Q1; Q⃗)SEP(R⃗)

Modular Integer arithmetic.

Int.sub x x = Int.zero Int.sub x Int.zero = x

Int.add x (Int.neg x) = Int.zero Int.add x Int.zero = x

Int.add Int.zero x = x

x ̸= y → offset_val(offset_val v i) j = offset_val v (Int.add i j)

Int.add(Int.repr i)(Int.repr j) = Int.repr(i+ j)

Int.add(Int.add z (Int.repr i)) (Int.repr j) = Int.add z (Int.repr(i+ j))

z > 0→ (align 0 z = 0) force_int(Vint i) = i

20. NORMALIZE 37

Type checking and miscellaneous.

tc_formals((i, t) :: r) = ‘and (‘(tc_val t) (eval_id i) (tc_formals r)

tc_formals nil= ‘⊤ tc_andp tc_TT e = e tc_andp e tc_TT = e

eval_id x (env_set ρ x v) = v

x ̸= y → (eval_id x (env_set ρ y v) = eval_id x v)

isptr v → (eval_cast_neutral v = v)

(∃t. tc_val t v ∧ is_pointer_type t) → (eval_cast_neutral v = v)

Expression evaluation. (autorewrite with eval, but in fact these are
usually handled just by simpl or unfold.)

deref_noload(tarray t n) = (fun v⇒ v)

eval_expr(Etempvar i t) = eval_id i eval_expr(Econst_int i t) = ‘(Vint i)

eval_expr(Ebinop op a b t) =

‘(eval_binop op (typeof a) (typeof b)) (eval_expr a) (eval_expr b)

eval_expr(Eunop op a t) = ‘(eval_unop op (typeof a)) (eval_expr a)

eval_expr(Ecast e t) = ‘(eval_cast(typeof e) t) (eval_expr e)

eval_lvalue(Ederef e t) = ‘force_ptr (eval_expr e)

20. NORMALIZE 38

Structure fields.
field_mapsto π t fld (force_ptr v) = field_mapsto π t fld v

field_mapsto_ π t fld (force_ptr v) = field_mapsto_ π t fld v

field_mapsto π t x (offset_val v Int.zero) = field_mapsto π t x v

field_mapsto_ π t x (offset_val v Int.zero) = field_mapsto_ π t x v

memory_block π Int.zero (Vptr b z) = emp

Postconditions. (autorewrite with ret-assert.)

normal_ret_assert ⊥ ek vl = ⊥

frame_ret_assert(normal_ret_assert P) Q = normal_ret_assert (P ∗Q)

frame_ret_assert P emp = P

frame_ret_assert P Q EK_return vl = P EK_return vl ∗ Q

frame_ret_assert(loop1_ret_assert P Q) R=

loop1_ret_assert (P ∗ R)(frame_ret_assert Q R)

frame_ret_assert(loop2_ret_assert P Q) R=

loop2_ret_assert (P ∗ R)(frame_ret_assert Q R)

overridePost P (normal_ret_assert Q) = normal_ret_assert P

normal_ret_assert P ek vl = (!!(ek= EK_normal)&& (!!(vl= None)&& P))

loop1_ret_assert P Q EK_normal None = P

overridePost P R EK_normal None= P

overridePost P R EK_return = R EK_return

function_body_ret_assert t P EK_return vl = bind_ret vl t P

20. NORMALIZE 39

Function return values.

bind_ret (Some v) t Q = (!!tc_val t v && ‘Q(make_args(ret_temp :: nil) (v ::

nil))) make_args′ σ a ρ =make_args (map fst (fst σ)) (a ρ) ρ

make_args(i :: l)(v :: r)ρ = env_set(make_args(l)(r)ρ) i v

make_args nil nil = globals_only get_result(Some x) = get_result1(x)

retval(get_result1 i ρ) = eval_id i ρ retval(env_set ρ ret_temp v) = v

retval(make_args(ret_temp :: nil) (v :: nil) ρ) = v

ret_type(initialized i ∆) = ret_type(∆)

IN ADDITION TO REWRITING, the normalize tactic applies the following rules:

P ⊢ ⊤ ⊥ ⊢ P P ⊢ P ∗⊤ (∀x . (P ⊢Q))→ (EX x : A, P ⊢Q)

(P → (⊤ ⊢Q))→ (!!P ⊢Q) (P → (Q ⊢ R))→ (!!P &&Q ⊢ R)

and does some rewriting and substitution when P is an equality in the goal,
(P → (Q ⊢ R)).

Given the goal x → P, where x is not a Prop, the normalize avoids doing an
intro. This allows the user to choose an appropriate name for x .

4021 Entailer (PLCC Ch. 26)

Our entailer tactic is a partial solver for entailments in the separation logic
over mpred. If it cannot solve the goal entirely, it leaves a simplified subgoal
for the user to prove. The algorithm is this:

1. Apply go-lower if the goal is in the lifted separation logic.
2. Gather all the pure propositions to a single pure proposition (in each

of the hypothesis and conclusion).
3. Given the resulting goal !!(P1∧ . . .∧ Pn)&& (Q1 ∗ . . .∗Qm) ⊢!!(P ′1∧ . . .∧

P ′n′)&& (Q′1 . . . ∗Q′m′), move each of the pure propositions Pi “above
the line.” Any Pi that’s an easy consequence of other above-the-line
hypotheses is deleted. Certain kinds of Pi are simplified in some ways.

4. For each of the Q i, saturate-local extracts any pure propositions that
are consequences of spatial facts, and inserts them above the line
if they are not already present. For example, p τq has two pure
consequences: isptr p (meaning that p is a pointer value, not an
integer or float) and tc-val τ q (that the value q has type τ).

5. For any equations (x = . . .) or (. . .= x) above the line, substitute x .
6. Simplify C-language comparisons.
7. Rewriting: the normalize tactic, as explained in Chapter 14.
8. Repeat from step 2, as long as progress is made.
9. Now the proof goal has the form (Q1 . . . ∗ Qm) ⊢!!(P ′1 ∧ . . . ∧

P ′n′)&& (Q′1 . . . ∗Q′m′). Any of the P ′i provable by auto are removed.
If Q1 ∗ . . . ∗ Qm ⊢ Q′1 ∗ . . . ∗ Q′m′ is trivially proved, then the entire
&&Q′1 ∗ . . . ∗Q′m′ is removed.

AT THIS POINT the entailment may have been solved entirely. Or there may
be some remaining P ′i and/or Q′i proof goals on the right hand side.

4122 Cancel (PLCC Ch. 26)

Given an entailment (A1 ∗A2) ∗ ((A3 ∗A4) ∗A5) ⊢ A′4 ∗ (A
′
5 ∗A′1) ∗ (A

′
3 ∗A′2) for

any associative-commutative rearrangement of the Ai, and where (for each
i), Ai is βη equivalent to A′i, then the cancel tactic will solve the goal.

When we say Ai is βη equivalence to A′i, that is equivalent to saying that
(change (Ai) with (A′i)) would succeed.

If the goal has the form (A1 ∗ A2) ∗ ((A3 ∗ A4) ∗ A5) ⊢ (A′4 ∗ B1 ∗ A′1) ∗ B2

where there is only a partial match, then cancel will remove the matching
conjuncts and leave a subgoal such as A2 ∗ A3 ∗ A5 ⊢ B1 ∗ B2.

If the goal is (A1 ∗A2)∗((A3 ∗A4)∗A5) ⊢ A′4 ∗⊤∗A
′
1, where some terms cancel

and the rest can be absorbed into ⊤, then cancel will solve the goal.

If the goal has the form

F := ?224 : list(environ→mpred)

(A1 ∗ A2) ∗ ((A3 ∗ A4) ∗ A5) ⊢ A′4 ∗ (fold_right sepcon emp F) ∗ A′1

where F is a frame that is an abbreviation for an uninstantiated logical
variable of type list(environ→mpred), then the cancel tactic will perform
frame inference: it will unfold the definition F , instantiate the variable (in
this case, to A2 :: A3 :: A5 :: nil), and solve the goal.

The frame may have been created by evar(F: list(environ→mpred)). This is
typically done automatically, as part of forward symbolic execution through
a function call.

4223 The Hoare triple (See PLCC Chapter 24)

In the judgment ∆ ⊢ {P} c {R}, written in Coq as

semax (∆: tycontext) (P: environ→mpred) (c: statement) (R: ret-assert)

∆ is a type context, giving types of function parameters, local variables,
and global variables; and giving specifications (funspec) of global
functions.

P is the precondition;
c is a command in the C language; and
R is the postcondition. Because a c statement can exit in different ways

(fall-through, continue, break, return), a ret-assert has predicates for
all of these cases.

The basic VST separation logic is specified in vst/veric/SeparationLogic.v,
and contains rules such as,

semax_set_forward
∆ ⊢ {▷P} x := e {∃v. x = (e[v/x])∧ P[v/x]}

Axiom semax-set-forward: ∀∆ P (x: ident) (e: expr),
semax ∆ (▷ (local (tc-expr ∆ e) &&

local (tc-temp-id id (typeof e) ∆ e) && P))
(Sset x e)
(normal-ret-assert

(EX old:val,
local (èq (eval-id x) (subst x (òld) (eval-expr e))) &&
subst x (òld) P)).

However, most C-program verifications will not use the basic rules, but will
use derived rules whose preconditions are in canonical (PROP/LOCAL/SEP)
form. Furthermore, program verifications do not even use the derived rules
directly, but use symbolic execution tactics that choose which derived rules
to apply. So we will not show the rules here; we describe how to use the
tactical system.

4324 Later (See PLCC Chapter 15)

Many of the Hoare rules, such as the one on page 42,

semax_set_forward
∆ ⊢ {▷P} x := e {∃v. x = (e[v/x])∧ P[v/x]}

have the operater ▷ (pronounced “later”) in their precondition.

The modal assertion ▷P is a slightly weaker version of the assertion P. It
is used for reasoning by induction over how many steps left we intend to
run the program. The most important thing to know about ▷later is that P
is stronger than ▷P, that is, P ⊢ ▷P; and that operators such as ∗, && ,ALL
(and so on) commute with later: ▷(P ∗Q) = (▷P) ∗ (▷Q).

This means that if we are trying to apply a rule such as semax-set-forward;
and if we have a precondition such as

local (tc-expr ∆ e) && ▷ local (tc-temp-id id t ∆ e) && (P1 ∗ ▷P2)

then we can use the rule of consequence to weaken this precondition to

▷(local (tc-expr ∆ e) && local (tc-temp-id id t ∆ e) && (P1 ∗ P2))

and then apply semax-set-forward. We do the same for many other kinds of
command rules.

This weakening of the precondition is done automatically by the forward
tactic, as long as there is only one ▷later in a row at any point among the
various conjuncts of the precondition.

A more sophisticated understanding of ▷ is needed to build proof rules for
recursive data types and for some kinds of object-oriented programming;
see PLCC Chapter 19.

4425 Specifying a function (See PLCC Chapter 27)

Let F be a C-language function, tret F (t1 x1, t2 x2, . . . tn xn) { . . . }.
The formal parameters are x⃗ : t⃗ (that is, x1 : t1, x2 : t2, . . . xn : tn) and the
return type is tret.

Specify F with precondition P(a⃗ : τ⃗)(x⃗ : t⃗) and postcondition
Q(a⃗ : τ⃗)(retval) where a⃗ are logical variables that both the precondi-
tion and the postcondition can refer to.

The x i are C-language variable identifiers, and the t i are C-language types
(tint, tfloat, tptr(tint), etc.). The ai are Coq variables and the τi are Coq
types.

Definition F-spec :=
DECLARE -F
WITH a1 : τ1, . . . ak : τk

PRE [x1 OF t1, . . . , xn OF tn] P
POST [tret] Q.

Example: for a C function, int sumlist (struct list ∗p);

Definition sumlist-spec :=
DECLARE -sumlist
WITH sh : share, contents : list int, p: val,
PRE [-p OF (tptr t-struct-list)]

local ((̀eq p) (eval-id -p))
&& (̀lseg LS sh contents p nullval)

POST [tint]
local ((̀eq (Vint (sum-int contents))) retval)
&& (̀lseg LS sh contents p nullval).

The specification itself is an object of type ident∗funspec, and in some cases
it can be useful to define the components separately:

Definition sumlist-funspec : funspec :=
WITH sh : share, contents : list int, p: val,

25. SPECIFYING A FUNCTION 45

PRE [-p OF (tptr t-struct-list)]
local ((̀eq p) (eval-id -p))
&& (̀lseg LS sh contents p nullval)

POST [tint]
local ((̀eq (Vint (sum-int contents))) retval)
&& (̀lseg LS sh contents p nullval).

Definition sumlist-spec : ident∗funspec :=
DECLARE -sumlist sumlist-funspec.

The precondition may be written in simple form, as shown above, or in
canonical form:

Definition sumlist-spec :=
DECLARE -sumlist
WITH sh : share, contents : list int, p: val,
PRE [-p OF (tptr t-struct-list)]

PROP() LOCAL((̀eq p) (eval-id -p))
SEP((̀lseg LS sh contents p nullval))

POST [tint]
local ((̀eq (Vint (sum-int contents))) retval)
&& (̀lseg LS sh contents p nullval).

At present, postconditions may not use PROP/LOCAL/SEP form.

4626 Specifying all functions (See PLCC
Chapter 27)

We give each function a specification, typically using the DECLARE/WITH/PRE/
POST notation. Then we combine these together into a global specification:

Γ : list (ident∗funspec) := (ι1,φ1) :: (ι2,φ2) :: (ι3,φ3) :: (ι4,φ4) :: nil.

We also make a global variables type specification, listing the types of all
extern global variables:

V : list (ident∗type) := (x1, t1) :: (x2, t2) :: nil

The initialization values of extern globals are not part of V , as (generally)
they are not invariant over program execution—global variables can be
updated by storing into them. Initializers are accessible in the precondition
to the -main function.

C-language functions can call each other, and themselves, and access global
variables. Correctness proofs of individual functions can take advantage of
the specifications of all global functions and types of global variables. Thus
we construct Γ and V before proving correctness of any functions.

The next step (in a program proof) is to prove correctness of each func-
tion. For each function F in a C program, CompCert clightgen produces
-F : ident. f-F : function. where function is a record telling the pa-
rameters and locals (and their types) and the function body. The predicate
semax-body states that F meets its specification; for each F we must prove:

Lemma body-F : semax-body V Γ f-F F-spec.

4727 Proving a function (See PLCC Chapter 27)

The predicate semax-body states that function F ’s implementation (function
body) meets its specification (funspec). The definition of the predicate,
written in veric/SeparationLogic.v, basically states the Hoare triple of the
function body, ∆ ⊢ {Pre} c {Post}, where Pre and Post are taken from the
funspec for f , c is the fn-body of the function F , and the type-context ∆ is
calculated from the global type-context overlaid with the parameter- and
local-types of the function.

To prove this, we begin with the tactic start-function, which takes care
of some simple bookkeeping—unfolding certain definitions, destructing
certain tuples, and putting the precondition in canonical form.

Lemma body-F : semax-body V Γ f-F F-spec.
Proof.
start-function.
name x -x.
name y -y.
name z -z.

Then, for each function parameter and nonaddressable local variable (scalar
local variable whose address is never taken), we write a name declaration;
in each case, -x is the identifier definition that clightgen has created from
the source-language name, and x is the Coq name that we wish to use for
the value of variable -x at various points. The only purpose of the name
tactic is to assist the go-lower tactic in choosing nice names.

At this point the proof goal will be a judgment of the form,

semax ∆ (PROP(P⃗)LOCAL(Q⃗)SEP(R⃗)) c Post.

We prove such judgments as follows:

1. Manipulate the precondition PROP(P⃗)LOCAL(Q⃗)SEP(R⃗) until it takes
a form suitable for forward symbolic execution through the first
statement in the command c. (In this we are effectively using the rule
of consequence.)

27. PROVING A FUNCTION 48

2. Apply a forward tactic to step into c. This will produce zero or more
entailments A ⊢ B to prove, where A is in canonical form; and zero or
more semax judgments to prove.

3. Prove the entailments, typically using go-lower; prove the judgment,
i.e., back to step 1.

Each kind of C command has different requirements on the form of the
precondition, for the forward tactic to succeed. In each of the following
cases, the expression E must not contain loads, stores, side effects, function
calls, or pointer comparisons. The variable x must be a nonaddressable
local variable.

c1; c2 Sequencing of two commands. The forward tactic will work on c1

first.
(c1; c2) c3 In this case, forward will re-associate the commands using the

seq-assoc axiom, and work on c1; (c2; c3).
x=E; Assignment statement. Expression E must not contain memory

dereferences (loads or stores using ∗prefix, suffix[], or -> operators).
Expression E must not contain pointer-comparisons. No restrictions
on the form of the precondition (except that it must be in canonical
form). The expression &p→next does not actually load or store (it
just computes an address) and is permitted.

x= *E; Memory load. The SEP component of the precondition must
contain an item of the form (̀mapsto π t) e v, where e is equivalent
to (eval-expr E). For example, if E is just an identifer (Etempvar -y t),
then e could be either (eval-expr (Etempvar -y t)) or (eval-id -y).

x= a[E]; Array load. This is just a memory load, equivalent to x=
*(a+E);.

x= E→fld; Field load. This is equivalent to x= ∗(E.fld) and can actually
be handled by the “memory load” case, but a special-purpose field-
load rule is easier to use (and will be automatically applied by the
forward tactic). In this case the SEP component of the precondition
must contain (̀field-at π t fld) v e, where t is the structure type to
which the field fld belongs, and e is equivalent to (eval-expr E).

27. PROVING A FUNCTION 49

*E1 = E2; Memory store. The SEP component of the precondition
must contain an item of the form (̀mapsto π t) e1 v or an item
(̀mapsto-π t) e1, where e1 is equivalent to (eval-expr E1).

a[E1]=E2; Array store. This is equivalent to *(a+E1)=E2; and is handled
by the previous case.

E1→ fld = E2; Field store. This can be handled by the general store case,
but a special-purpose field-store rule is easier to use. The SEP compo-
nent of the precondition must contain either (̀field-at π t fld) v e1

or (̀field-mapsto- π t fld) e1, where t is the structure type to which
the field fld belongs, and e1 is equivalent to (eval-expr E1). The
share π must be strong enough to grant write permission, that is,
writable-share(π).

x = E1 op E2; If E1 or E2 evaluate to pointers, and op is a comparison
operator (=, !=, <, <=, >,≥), then E1 op E2 must not occur except
in this special-case assignment rule. When E1 and E2 both have
numeric values, the ordinary assignment statement rule applies.

Pointer comparisons are tricky in CompCert C for reasons ex-
plained at PLCC page 249; the program logic uses the semax-ptr-compare
rule (PLCC page 164). After applying the forward tactic, the user will
be left with some proof obligations: Prove that both E1 and E2

evaluate to allocated locations (i.e., that the precondition implies
E1

π1 _∗ T T and also implies E2
π2 _∗ T T , for any π1 and π2). If the

comparison is any of >, <,≥ , <=, prove that E1 and E2 both point
within the same allocated object. These are preconditions for even
being permitted to test the pointers for equality (or inequality). See
also page 54.

if (E) C1 else C2 No restrictions on the form of the precondition. forward
will create 3 subgoals: (1) prove that the precondition entails
tc-expr ∆ E. For many expressions E, the condition tc-expr ∆ E is
simply TT, which is trivial to prove. (2) the then clause... (3) the
else clause... .

while (E) C For a while-loop, use the forward-while tactic (page ??).
return E; No special precondition, except that the presence/absence of E

must match the nonvoid/void return type of the function. The proof
goal left by forward is to show that the precondition (with appropriate

27. PROVING A FUNCTION 50

substitution for the abstract variable ret-var) entails the function’s
postcondition.

x = f (a1, . . . , an); For a function call, use forward-call(W), where W is a
witness, a tuple corresponding (componentwise) to the WITH clause
of the function specification. (If you do just forward, you’ll get a
message with advice about the type of W .)

This results a proof goal to show that the precondition implies
the function precondition and includes an uninstantiated variable:
The Frame represents the part of the spacial precondition that is
unchanged by the function call. It will generally be instantiated by a
call to cancel.

51

28 Manipulating preconditions
In some cases you cannot go forward until the precondition has a certain
form. For example, in ordinary separation logic we might have {p ̸= q ∧ p⇝
q} x := p→ tail {Post}. In order to use the proof rule for load, we must use
the rule of consequence, to prove,

p ̸= q ∧ p⇝q ⊢ p ̸= q ∧ ∃h, t. p (h, t) ∗ t⇝q

then instantiate the existentials; this finally gives us

{p ̸= q ∧ p (h, t) ∗ t⇝q} x := p→ tail {Post}

which is provable by the standard load rule of separation logic.

Faced with the proof goal semax ∆ (PROP(P⃗)LOCAL(Q⃗)SEP(R⃗)) c Post
where PROP(P⃗)LOCAL(Q⃗)SEP(R⃗) does not match the requirements for
forward symbolic execution, you have several choices:

• Use the rule of consequence explicitly:
apply semax-pre with PROP(P⃗ ′)LOCAL(Q⃗′)SEP(R⃗′),
then prove P⃗; Q⃗; R⃗ ⊢ P⃗ ′; Q⃗′; R⃗′ using go-lower (page 34).
• Use the rule of consequence implicitly, by using tactics that modify

the precondition (and may leave entailments for you to prove).
• Do rewriting in the precondition, either directly by the standard

rewrite and change tactics, or by normalize.
• Extract propositions and existentials from the precondition, by

using normalize (or by applying the rules extract-exists-pre and
semax-extract-PROP).

TACTICS FOR MANIPULATING PRECONDITIONS. In many of these tactics we
select specific conjucts from the SEP items, that is, the semicolon-separated
list of separating conjuncts. These tactic refer to the list by zero-based
position number, 0,1,2,. . . . For example, suppose the goal is a semax or

28. MANIPULATING PRECONDITIONS 52

entailment containing PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j). Then:

focus_SEP i j k. Bring items #i, j, k to the front of the SEP list.

focus-sep 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
focus-sep 0. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j).
focus-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b;d;a;c;e;f;g;h;i;j)
focus-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d;b;a;c;e;f;g;h;i;j)

gather_SEP i j k. Bring items #i, j, k to the front of the SEP list and
conjoin them into a single element.

gather-sep 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
gather-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b∗d;a;c;e;f;g;h;i;j)
gather-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d∗b;a;c;e;f;g;h;i;j)

replace_SEP i R. Replace the ith element the SEP list with the assertion R,
and leave a subgoal to prove.

replace-sep 3 R. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;R;e;f;g;h;i;j).

with subgoal PROP(P⃗)LOCAL(Q⃗)SEP(d) ⊢ R.

replace_in_pre S S′. Replace S with S′ anywhere it occurs in the precondi-
tion then leave (P⃗; Q⃗; R⃗) ⊢ (P⃗; Q⃗; R⃗)[S′/S] as a subgoal.

frame_SEP i j k. Apply the frame rule, keeping only elements i, j, k of the
SEP list. See Chapter 29.

5329 The Frame rule
Separation Logic supports the Frame rule,

Frame
{P} c {Q}

{P ∗ F} c {Q ∗ F}

To use this in a forward proof, suppose you have the proof goal,

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0; R1; R2) c1; c2; c3 Post

and suppose you want to “frame out” R2 for the duration of c1; c2, and have
it back again for c3. First you rewrite by seq-assoc to yield the goal

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0; R1; R2) (c1; c2); c3 Post

Then eapply semax-seq’ to peel off the first command (c1; c2) in the new
sequence:

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0; R1; R2) c1; c2 ?88

semax ∆′ ?88 c3 Post

Then frame-SEP 0 2 to retain only R0; R2.

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0; R2) c1; c2 . . .

Now you’ll see that (in the precondition of the second subgoal) the
unification variable ?88 has been instantiated in such a way that R2 is
added back in.

5430 Pointer comparisons See PLCC Chapter 25

Pointer comparisons can be split into two cases:

1. Comparisons between two expressions that evaluate to be pointers.
In this case, both of the pointers must be to allocated objects, or the
expression will not evaluate

2. Comparisons between an expression that evaluates to the null pointer
and any expression that evaluates to a value with a pointer type. This
expression will always evaluate

If you are sure that your pointer comparison falls into the first case, you
may treat it exactly like any other expression. The proof may eventually
generate a side-condition asking you to prove that one of the expressions
evaluates to the null pointer. If your pointer comparison might be between
two pointers, however, the expression should be factored into its own
statement (PLCC page 145).

When you use forward on a pointer comparison you might get a side
condition with a disjunction. The left and right sides of the disjunction
correspond to the first and second type of comparison above. In simple
cases, the tactic can solve the disjunction automatically.

5531 Structured data
The C programming language has struct and array to represent structured
data. The Verifiable C logic provides operators field-at, array-at, and data-at
to describe assertions about structs and arrays.

Given a struct definition, struct list {int head; struct list ∗tail;};
the clightgen utility produces the type t-struct-list describing fields head
and tail. Then these assertions are all equivalent:

mapsto π tint p h ∗
mapsto π (tptr t-struct-list) (offset-val p (Vint (Int.repr 4))) t

field-at π t-struct-list [head] h p ∗ field-at π t-struct-list [-tail] t p

data-at π t-struct-list (h,t) p

field-at π t-struct-list nil (h,t) p

The version using mapsto is correct (assuming a 32-bit configuration of
CompCert) but rather ugly; the second version is useful when you want to
“frame out” a particular field; the third version describes the contents of all
structure-fields at once.

The data-at predicate is dependently typed; the type of its third argument
(h, t) depends on the value of its second argument. The dependent type
is expressed by the function, reptype: type →Type that converts
C-language types into Coq Types.

Here, reptype t-struct-list = val∗val, so the type of (h, t) is (val∗val). The
value h may be Vint(i) or Vundef, and t may be Vpointer b z, Vint Int.zero,
or Vundef. The Vundef values represent uninitialized data fields.

When τ is a struct type and n is a nat, the tactic unfold-data-at n unfolds
the nth occurrence of data-at π τ to a series of field-at π τ (f ::nil), where
the f are the various fields of the struct τ. For example, it would unfold the

31. STRUCTURED DATA 56

third assertion above to look like the second one.

The forward tactic, when the next command is a load or store command,
can operate directly on data-at assertions; it is not necessary to unfold them
to individual field-at conjuncts. This is a new feature of VST 1.5.

WHY ARE THE ARGUMENTS BACKWARDS? We write
field-at π t-struct-list [head] h p where Reynolds would have written
p.head h, and we write data-at π t-struct-list (h,t) p where Reynolds
would have written p ,→ (h, t). Putting the contents argument before
the pointer argument makes it easier to express identities in our lifted
separation logic. That is, we commonly have formulas such as

(̀data-at π t-struct-list (h,t)) (eval-id -p)tptr t-struct-list))

which simplify to

(̀field-at π t-struct-list [head] h ∗ field-at π t-struct-list [-tail] t)
(eval-id -p (tptr t-struct-list))

Expressing these equivalences with the arguments in the other order would
lead to extra lambdas, which are (ironically) no fun at all.

PARTIALLY INITIALIZED DATA STRUCTURES. Consider the program

struct list ∗f(void) {
struct list ∗p = (struct list ∗)malloc(sizeof(struct list));

/∗ 1 ∗/ p→head= 3;
/∗ 2 ∗/ p→ tail= NULL;
/∗ 3 ∗/ return p;

}

We do not want to assume that malloc returns initialized memory, so at
point 1 the contents of head and tail are Vundef. We can write this as any
of the following:

31. STRUCTURED DATA 57

field-at Tsh t-struct-list [head] Vundef p
∗ field-at Tsh t-struct-list [-tail] Vundef p

field-at- Tsh t-struct-list [head] p ∗ field-at- Tsh t-struct-list [-tail] p
data-at Tsh t-struct-list (Vundef,Vundef) p
data-at- Tsh t-struct-list p

If malloc returns fields that—operationally—contain defined values instead
of Vundef, these assertions are still valid, as they ignore the contents of the
fields.

At point 2, all the assertions above are still true, but they are weaker than
the “appropriate” assertion, which may be written as any of,

field-at Tsh t-struct-list [head] (Vint(Int.repr 3)) p
∗ field-at Tsh t-struct-list [-tail] Vundef p

field-at Tsh t-struct-list [head] (Vint(Int.repr 3))
∗ field-at- Tsh t-struct-list [-tail] p

data-at Tsh t-struct-list (Vint(Int.repr 3), Vundef) p

At point 3, we can write either of,

field-at Tsh t-struct-list [head] (Vint(Int.repr 3)) p
∗ field-at Tsh t-struct-list [-tail] (Vint Int.zero) p

data-at Tsh t-struct-list (Vint(Int.repr 3), Vint Int.zero) p

FULLY INITIALIZED DATA STRUCTURES. In a function precondition it is some-
times convenient to write,

WITH data: reptype t-struct-list
PRE [-p OF tptr t-struct-list] (∗∗)

(̀data-at Tsh t-struct-list data) (eval-id -p (tptr t-struct-list))
POST [...] ...

If p→head and p→ tail may be uninitialized, this is fine. But if the structure
is known to be initialized, the precondition as written does not express this

31. STRUCTURED DATA 58

fact. One would need to add the conjunct
!!(is-int (fst data) ∧ is-pointer-or-null (snd data))
at the point marked (∗∗).

The function reptype’: type →Type expresses the type of initialized data
structures. For example, reptype’ t-struct-list is (int∗val). The function

repinj (t: type): reptype’ t → reptype t

expresses injections from (possibly) undefined to defined values. Suppose
(h: int, t: val) is a value of type reptype’ t-struct-list. Then

repinj t-struct-list (h,t) = (Vint h, t)

Using reptype’ one could write,

WITH data: reptype’ t-struct-list
PRE [-p OF tptr t-struct-list]

!!(is-pointer-or-null (snd data) &&
(̀data-at Tsh t-struct-list (repinj -data)) (eval-id -p (tptr t-struct-list))

POST [...] ...

Notice that this only solves half the problem—for integers but not for
pointers. Since defined pointers can be either NULL or a Vpointer, we
use val to represent them, and the Coq type alone does not express the
refinement. One could imagine a version of reptype’ that uses a refinement
type to accomplish this, but it might be unwieldy.

5932 Nested structs
Consider a nested struct; shown here is exactly the example in progs/nest2.c,
so you can examine the proofs in progs/verif-nest2.c.

struct a {double x1; int x2;};
struct b {int y1; struct a y2;};

struct b pb; struct a pa; int i;

The command i = p.y2.x2; does a nested field load. We call y2.x2 the field
path. The precondition for this command might include the assertion,

LOCAL((̀eq pb) (eval-var -pb))
SEP((̀data-at π t-struct-b (y1,(x1,x2)) pb); Frame)

where Frame has some unrelated spatial conjuncts. The postcondition
(after the load) would include the new LOCALfact, (̀eq x2) (eval-id i).

The tactic (unfold-data-at 1%nat) changes the SEP part of the assertion as
follows:

SEP((̀field-at Ews t-struct-b [-y1] (Vint y1) pb);
(̀field-at Ews t-struct-b [-y2] (Vfloat x1, Vint x2) pb);

Frame)

and then doing (unfold-field-at 2%nat) unfolds the second field-at as
follows,

SEP((̀field-at Ews t-struct-b [-y1] (Vint y1) pb);
(̀field-at Ews t-struct-b [-x1;-y2] (Vfloat x1) pb);
(̀field-at Ews t-struct-b [-x2;-y2] (Vint x2) pb);

Frame)

The third argument of field-at represents the path of structure-fields that
leads to a given substructure. The empty path (nil) works too; it “leads” to
the entire structure.

6033 Signed and unsigned integers
Mathematical proofs use the mathematical integers (the Z type in Coq);
C progams use 32-bit signed or unsigned integers. They are related as
follows:

Int.repr: Z → int.
Int.unsigned: int →Z.
Int.signed: int →Z.

with the following lemmas:

Int.repr_unsigned
Int.repr(Int.unsigned z) = z

Int.unsigned_repr
0≤ z ≤ Int.max_unsigned

Int.unsigned(Int.repr z) = z

Int.repr_signed
Int.repr(Int.signed z) = z

Int.signed_repr
Int.min_signed≤ z ≤ Int.max_signed

Int.signed(Int.repr z) = z

Int.repr truncates to a 32-bit twos-complement representation (losing
information if the input is out of range). Int.signed and Int.unsigned are
different injections back to Z that never lose information.

When doing proofs about integers, the recommended proof technique is
to make sure your integers never overflow. That is, if the C variable -x
contains the value Vint (Int.repr x), then make sure x is in the appropriate
range. Let’s assume that -x is a signed integer, i.e. declared in C as int x;
then the hypothesis is,

H: Int.min-signed ≤ x ≤ Int.max-signed

If you maintain this hypothesis “above the line”, then the normalize tactic
can automatically rewrite with Int.signed (Int.repr x) = x . Also, to solve
goals such as,

33. SIGNED AND UNSIGNED INTEGERS 61

...
H2 : 0 <= n <= Int.max-signed
...

Int.min-signed <= 0 <= n

you can use the repable-signed tactic, which is basically just omega
with knowledge of the values of Int.min-signed, Int.max-signed, and
Int.max-unsigned.

To take advantage of this, put conjuncts into the PROP part of your
function precondition such as 0 ≤ i < n; n ≤ Int.max_signed. Then the
start-function tactic will move them above the line, and the other tactics
mentioned above will make use of them.

To see an example in action, look at progs/verif-sumarray.v. The array size
and index (variables size and i) are kept within bounds; but the contents
of the array might overflow when added up, which is why add-elem uses
Int.add instead of Z.add.

6234 For loops
The C-language for loop has the general form,

for (init; test; incr) body

To solve a proof goal of this form (or when this is followed by other
statements in sequence), use the tactic

forward-for Inv PreIncr PostCond

where Inv, PreIncr, PostCond are assertions (in PROP/LOCAL/SEP form):

Inv is the loop invariant, that holds immediately after the init command is
executed and before each time the test is done; PreIncr is the invarint that
holds immediately after the loop body and right before the incr;

PostCond is the assertion that holds after the loop is complete (whether by
a break statement, or the test evaluating to false).

The following feature will appear in VST version 1.5.

Many for-loops have this special form, for (init; id < hi; id++) body
such that the expression hi will evaluate to the same value every time
around the loop. This upper-bound expression need not be a literal
constant, it just needs to be invariant. Then you can use the tactic,

forward-for-simple-bound n (EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗).

where n is the upper bound: a Coq value of type Z such that hi
will evaluate to n. The loop invariant is given by the expression
(EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗), where i is the value (in each it-
eration) of the loop iteration variable id. This tactic generates simpler
subgoals than the general forward-for tactic.

34. FOR LOOPS 63

When the loop has the form, for (id=lo; id < hi; id++) body
where lo is a literal constant, then the forward-for-simple-bound tactic will
generate slightly simpler subgoals.

6435 Nested Loads
This experimental feature will appear in VST release 1.5.

To handle assignment statements with nested loads, such as x[i]=y[i]+z[i];
the recommended method is to break it down into smaller statments
compatible with separation logic: t=y[i]; u=z[i]; x[i]=t+u;. However,
sometimes you may be proving correctness of preexisting or machine-
generated C programs. Verifiable C has an experimental nested-load
mechanism to support this.

We use an expression-evaluation relation e ⇓ v which comes in two flavors:

rel-expr : expr →val → rho →mpred.
rel-lvalue: expr →val → rho →mpred.

The assertion rel-expr e v ρ says, “expression e evaluates to value v in
environment ρ and in the current memory.” The rel-lvalue evaluates the
expression as an l-value, to a pointer to the data.

Evaluation rules for rel-expr are listed here:

rel-expr-const-int: ∀ (i : int) τ (P : mpred) (ρ : environ),
P ⊢ rel-expr (Econst-int i τ) (Vint i) ρ.

rel-expr-const-float: ∀ (f : float) τ P (ρ : environ),
P ⊢ rel-expr (Econst-float f τ) (Vfloat f) ρ.

rel-expr-const-long: ∀ (i : int64) τ P ρ,
P ⊢ rel-expr (Econst-long i τ) (Vlong i) ρ.

rel-expr-tempvar: ∀ (id : ident) τ (v : val) P ρ,
Map.get (te-of ρ) id = Some v →
P ⊢ rel-expr (Etempvar id τ) v ρ.

rel-expr-addrof: ∀ (e : expr) τ (v : val) P ρ,
P ⊢ rel-lvalue e v ρ →
P ⊢ rel-expr (Eaddrof e τ) v ρ.

rel-expr-unop: ∀ P (e1 : expr) (v1 v : val) τ op ρ,
P ⊢ rel-expr e1 v1 ρ →
Cop.sem-unary-operation op v1 (typeof e1) = Some v →

35. NESTED LOADS 65

P ⊢ rel-expr (Eunop op e1 τ) v ρ.
rel-expr-binop: ∀ (e1 e2 : expr) (v1 v2 v : val) τ op P ρ,

P ⊢ rel-expr e1 v1 ρ →
P ⊢ rel-expr e2 v2 ρ →
(∀ m : Memory.Mem.mem,
Cop.sem-binary-operation op v1 e (typeof e1) v2 (typeof e2) m = Some v) →

P ⊢ rel-expr (Ebinop op e1 e2 τ) v ρ.
rel-expr-cast: ∀ (e1 : expr) (v1 v : val) τ P ρ,

P ⊢ rel-expr e1 v1 ρ →
Cop.sem-cast v1 (typeof e1) τ = Some v →
P ⊢ rel-expr (Ecast e1 τ) v ρ.

rel-expr-lvalue: ∀ (a : expr) (sh : Share.t) (v1 v2 : val) P ρ,
P ⊢ rel-lvalue a v1 ρ →
P ⊢mapsto sh (typeof a) v1 v2 ∗ TT →
v2 <> Vundef →
P ⊢ rel-expr a v2 ρ.

rel-lvalue-local: ∀ (id : ident) τ (b : block) P ρ,
P ⊢ !!(Map.get (ve-of ρ) id = Some (b, τ)) →
P ⊢ rel-lvalue (Evar id τ) (Vptr b Int.zero) ρ.

rel-lvalue-global: ∀ (id : ident) τ (v : val) P ρ,
P
⊢ !!(Map.get (ve-of ρ) id = None ∧

Map.get (ge-of ρ) id = Some (v, τ)) →
P ⊢ rel-lvalue (Evar id τ) v ρ.

rel-lvalue-deref: ∀ (a : expr) (b : block) (z : int) τ P ρ,
P ⊢ rel-expr a (Vptr b z) ρ →
P ⊢ rel-lvalue (Ederef a τ) (Vptr b z) ρ.

rel-lvalue-field-struct: ∀ (i id : ident) τ e (b : block) (z : int) (fList : fieldlist) att (δ : Z) P ρ,
typeof e = Tstruct id fList att →
field-offset i fList = Errors.OK δ →
P ⊢ rel-expr e (Vptr b z) ρ →
P ⊢ rel-lvalue (Efield e i τ) (Vptr b (Int.add z (Int.repr δ))) ρ.

35. NESTED LOADS 66

The primitive nested-load assignment rule is,

Axiom semax-loadstore:
∀v0 v1 v2 ∆ e1 e2 sh P P’,

writable-share sh →
P ⊢ !! (tc-val (typeof e1) v2)

&& rel-lvalue e1 v1
&& rel-expr (Ecast e2 (typeof e1)) v2
&& ((̀mapsto sh (typeof e1) v1 v0) ∗ P’) →

semax ∆ (▷ P) (Sassign e1 e2)
(normal-ret-assert ((̀mapsto sh (typeof e1) v1 v2) ∗ P’)).

but do not use this rule! It is best to use a derived rule, such as,

Lemma semax-loadstore-array:
∀n vi lo hi t1 (contents: Z → reptype t1) v1 v2 ∆ e1 ei e2 sh P Q R,
reptype t1 = val →
type-is-by-value t1 →
legal-alignas-type t1 = true →
typeof e1 = tptr t1 →
typeof ei = tint →
PROPx P (LOCALx Q (SEPx R))
⊢ rel-expr e1 v1

&& rel-expr ei (Vint (Int.repr vi))
&& rel-expr (Ecast e2 t1) v2 →

nth-error R n = Some ((̀array-at t1 sh contents lo hi v1)) →
writable-share sh →
tc-val t1 v2 →
in-range lo hi vi →
semax ∆ (▷ PROPx P (LOCALx Q (SEPx R)))
(Sassign (Ederef (Ebinop Oadd e1 ei (tptr t1)) t1) e2)
(normal-ret-assert
(PROPx P (LOCALx Q (SEPx
(replace-nth n R

(̀array-at t1 sh (upd contents vi (valinject - v2)) lo hi v1)))))).

35. NESTED LOADS 67

Proof-automation support is available for semax-loadstore-array and
rel-expr, in the form of the forward-nl (for “forward nested loads”) tac-
tic. For example, with this proof goal,

semax Delta
(PROP ()
LOCAL((̀eq (Vint (Int.repr i))) (eval-id -i); (̀eq x) (eval-id -x);
(̀eq y) (eval-id -y); (̀eq z) (eval-id -z))

SEP((̀array-at tdouble Tsh (Vfloat oo fx) 0 n x);
(̀array-at tdouble Tsh (Vfloat oo fy) 0 n y);
(̀array-at tdouble Tsh (Vfloat oo fz) 0 n z)))

(Ssequence
(Sassign (∗ x[i] = y[i] + z[i]; ∗)

(Ederef
(Ebinop Oadd (Etempvar -x (tptr tdouble)) (Etempvar -i tint)

(tptr tdouble)) tdouble)
(Ebinop Oadd

(Ederef
(Ebinop Oadd (Etempvar -y (tptr tdouble)) (Etempvar -i tint)

(tptr tdouble)) tdouble)
(Ederef

(Ebinop Oadd (Etempvar -z (tptr tdouble)) (Etempvar -i tint)
(tptr tdouble)) tdouble) tdouble))

MORE-COMMANDS)
POSTCONDITION

the tactic-application forward-nl yields the new proof goal,

semax Delta
(PROP ()
LOCAL((̀eq (Vint (Int.repr i))) (eval-id -i); (̀eq x) (eval-id -x);
(̀eq y) (eval-id -y); (̀eq z) (eval-id -z))

SEP
((̀array-at tdouble Tsh

(upd (Vfloat oo fx) i (Vfloat (Float.add (fy i) (fz i)))) 0 n x);
(̀array-at tdouble Tsh (Vfloat oo fy) 0 n y);

35. NESTED LOADS 68

(̀array-at tdouble Tsh (Vfloat oo fz) 0 n z)))
MORE-COMMANDS
POSTCONDITION

6936 Cygwin
Users of Microsoft Windows should install VST under Cygwin. Unfortu-
nately, CompCert 2.3 does not (completely) build under Cygwin. That is,
CompCert’s Coq development builds fine; the subset of CompCert imported
into VST (which is mirrored in vst/compcert) has no problems. The prob-
lem is with the Ocaml build of the extracted code. CompCert uses the
Menhir parser generator, which does not build in Cygwin (as of July 2014).

This means that you cannot use CompCert’s clightgen front-end to translate
.c files into .v files, on cygwin. You will have to use a CompCert installation
on a Mac or Linux machine (or virtual machine) to do this.

	Verifiable C
	Contents
	Getting started
	Differences from PLCC
	Memory predicates
	Separation Logic
	Mapsto and func_ptr
	Shares
	CompCert C
	Verifiable C programming
	32-bit Integers
	Values
	C types
	C expression syntax
	C operators
	C expression evaluation
	C type checking
	Lifted separation logic
	Canonical forms
	Supercanonical forms
	Go_lower
	Normalize
	Entailer
	Cancel
	The Hoare triple
	Later
	Specifying a function
	Specifying all functions
	Proving a function
	Manipulating preconditions
	The Frame rule
	Pointer comparisons
	Structured data
	Nested structs
	Signed and unsigned integers
	For loops
	Nested Loads
	Cygwin

