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1 Overview
Verifiable C is a language and program logic for reasoning about the
functional correctness of C programs. The language is a subset of
CompCert C light; it is a dialect of C in which side-effects and loads have
been factored out of expressions. The program logic is a higher-order
separation logic, a kind of Hoare logic with better support for reasoning
about pointer data structures, function pointers, and data abstraction.

Verifiable C is foundationally sound. That is, it is proved (with a machine-
checked proof in the Coq proof assistant) that,

Whatever observable property about a C program you prove
using the Verifiable C program logic, that property will
actually hold on the assembly-language program that comes
out of the C compiler.

This soundness proof comes in two parts: The program logic is proved
sound with respect to the semantics of CompCert C, by a team of
researchers primarily at Princeton University; and the C compiler is
proved correct with respect to those same semantics, by a team of
researchers primarily at INRIA. This chain of proofs from top to bottom,
connected in Coq at specification interfaces, is part of the Verified Software
Toolchain.

Verified

Software

Toolchain
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To use Verifiable C, one must have had some experience using Coq, and
some familiarity with the basic principles of Hoare logic. These can be
obtained by studying Pierce’s Software Foundations interactive textbook,
and doing the exercises all the way to chapter “Hoare2.”

It is also useful to read the brief introductions to Hoare Logic and Sepa-
ration Logic, covered in Appel’s Program Logics for Certified Compilers,
Chapters 2 and 3.

PROGRAM LOGICS FOR CERTIFIED COMPILERS (Cambridge University
Press, 2014) describes Verifiable C version 1.1. If you are interested in
the semantic model, soundness proof, or memory model of VST, the book
is well worth reading. But it is not a reference manual.

More recent VST versions differ in several ways from what the PLCC
book describes. • In the LOCAL component of an assertion, one writes
temp i v instead of (̀eq v) (eval-id i). • In the SEP component of an
assertion, backticks are not used (predicates are not lifted). • In general,
the backtick notation is rarely needed. • The type-checker now has a
more refined view of char and short types. • field-mapsto is now called
field-at, and it is dependently typed. • typed-mapsto is renamed to data-at,
and last two arguments are swapped. • umapsto (“untyped mapsto”) no
longer exists. • mapsto sh t v w now permits either (w =Vundef) or the
value w belongs to type t. This permits describing uninitialized locations,
i.e., mapsto-sh t v = mapsto- sh t v Vundef. For function calls, one uses
forward-call instead of forward. • C functions may fall through the end of
the function body, and this is (per the C semantics) equivalent to a return;
statement.

https://www.cis.upenn.edu/~bcpierce/sf/
http://vst.cs.princeton.edu/download/PLCC-to-chapter-3.pdf#page=20
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2 Installation
The Verified Software Toolchain runs on Linux, Mac, or Windows. You
will need to install:

1. Coq 8.4pl6, from coq.inria.fr. Follow the standard installation
instructions.

2. CompCert 2.6, from compcert.inria.fr. You will want to build the
clightgen tool, using these commands: ./configure ia32-linux; make
clightgen. You might replace ia32-linux with ia32-macosx or ia32-
cygwin. Verifiable C should work on other 32-bit architectures as
well, but has not been extensively tested.

3. VST 1.6, from vst.cs.princeton.edu, or else an appropriate version
from .

WORKFLOW. Within vst, the progs directory contains some sample C
programs with their verifications. The workflow is:

• Write a C program F.c.
• Run clightgen F.c to translate it into a Coq file F.v.
• Write a verification of F.v in a file such as verif-F.v. That latter

file must import both F.v and the VST Floyd1 program verification
system, floyd.proofauto.

LOAD PATHS. Interactive development environments (CoqIDE or Proof
General) will need their load paths properly initialized through command-
line arguments. Running make in vst creates a file .loadpath with the right
arguments. You can then do (for example),
coqide c̀at .loadpath` progs/verif-reverse.v
See the heading USING PROOF GENERAL AND COQIDE in the file
BUILD_ORGANIZATION for more information.

1Named after Robert W. Floyd (1936–2001), a pioneer in program verification.

https://github.com/PrincetonUniversity/VST


73 Verifiable C programming See PLCC
Chapter 22

Verifiable C is a language (subset of C) and a program logic (higher-order
impredicative concurrent separation logic).

In writing Verifiable C programs you must:

• Make each memory dereference into a top level expression (PLCC
page 143)

• Avoid casting between integers and pointers.
• Avoid goto and switch statements.
* Avoid nesting function calls and assignments inside subexpressions.
* Factor && and || operators into if statements (to capture short

circuiting behavior).

The items marked * are accomplished automatically by CompCert’s
clightgen tool. That is, if you have function calls or assignments in-
side expressions, clightgen will factor the your program adding extra
assignments to temporary variables.

There’s a special treatment of malloc/free; see Chapter 46.
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4 Clightgen and ASTs
We will introduce Verifiable C by explaining the proof of a simple C
program: adding up the elements of an array.

#include <stddef.h>

int sumarray(int a[], int n) {
int i,s,x;
i=0;
s=0;
while (i<n) {

x=a[i];
s+=x;
i++;

}
return s;

}

int four[4] = {1,2,3,4};

int main(void) {
int s;
s = sumarray(four,4);
return s;

}

You can examine this program in VST/progs/sumarray.c. Then look at
progs/sumarray.v to find the output of CompCert’s clightgen utility: it is
the abstract syntax tree (AST) of the C program, expressed in Coq. In
sumarray.v there are definitions such as,

· · ·
Definition -main : ident := 54%positive.
· · ·
Definition -s : ident := 50%positive.
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· · ·
Definition f-sumarray := {|

fn-return := tint; . . .
fn-params := ((-a, (tptr tint)) :: (-n, tint) :: nil);
fn-temps := ((-i, tint) :: (-s, tint) :: (-x, tint) :: nil);
fn-body :=

(Ssequence
(Sset -i (Econst-int (Int.repr 0) tint))
(Ssequence

(Sset -s (Econst-int (Int.repr 0) tint))
(Ssequence . . .

)))
|}.

· · ·

Definition prog : Clight.program := {| . . . |}

In general it’s never necessary to read the AST file such as sumarray.v. But
it’s useful to know what kind of thing is in there. C-language identifiers
such as main and s are represented in ASTs as positive numbers; the
definitions -main and -s are abbreviations for these. The AST for sumarray
is in the function-definition f-sumarray.

There you can see that sumarray’s return type is is int. To represent the
syntax of C type-expressions, CompCert defines,

Inductive type : Type :=
| Tvoid: type
| Tint: intsize →signedness →attr →type
| Tpointer: type →attr →type
| Tstruct: ident →attr →type
| . . . .

and we abbreviate tint := Tint I32 Signed noattr.
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5 Use the IDE
Chapter 6 through Chapter 16 are meant to be read while you have the file
progs/verif_sumarray.v open in a window of your interactive development
environment for Coq. You can use Proof General, CoqIDE, or any other
IDE that supports Coq.

Reading these chapters will be much less informative if you cannot see
the proof state as each chapter discusses it.

Before starting the IDE, read about load paths, at the heading USING

PROOF GENERAL AND COQIDE in the file VST/BUILD_ORGANIZATION.
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6 Functional spec, API spec
A program without a specification cannot be incorrect, it can only be
surprising. (Paraphrase of J. J. Horning, 1982)

The file progs/verif-sumarray.v contains the specification of sumarray.c, and
the proof of correctness of the C program with respect to that specification.
For larger programs, one would typically break this down into three or
more files:

1. Functional specification
2. API specification
3. Function-body correctness proofs, one per file.

To prove correctness of sumarray.c, we start by writing a functional spec of
adding-up-a-sequence, then an API spec of adding-up-an-array-in-C.

FUNCTIONAL SPEC. A mathematical model of this program is the sum
of a sequence of integers:

∑n−1
i=0 xi. It’s conventional in Coq to use list to

represent a sequence; we can represent the sum with a list-fold:

Definition sum-Z : list Z →Z := fold-right Z.add 0.

A functional spec contains not only definitions; it’s also useful to include
theorems about this mathematical domain:

Lemma sum-Z-app: ∀a b, sum-Z (a++b) = sum-Z a + sum-Z b.
Proof.

intros. induction a; simpl; omega.
Qed.

The data types used in a functional spec can be any kind of mathematics
at all, as long as we have a way to relate them to the integers, tuples,
and sequences used in a C program. But the mathematical integers Z
and the 32-bit modular integers Int.int are often relevant. Notice that this
functional spec does not depend on sumarray.v or even on anything in the
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Verifiable C libraries. This is typical, and desirable: the functional spec is
about mathematics, not about C programming.

THE APPLICATION PROGRAMMER INTERFACE of a C program is expressed
in its header file: function prototypes and data-structure definitions that
explain how to call upon the modules’ functionality. In Verifiable C, an
API specification is written as a series of function specifications (funspecs)
corresponding to the function prototypes.

We start verif-sumarray.v with some standard boilerplate:

Require Import floyd.proofauto.
Require Import progs.sumarray.
Instance CompSpecs : compspecs. make-compspecs prog. Defined.
Definition Vprog : varspecs. mk-varspecs prog. Defined.

The first line imports Verifiable C and its Floyd proof-automation library.
The second line imports the AST of the program to be proved. Lines 3 and
4 are identical in any verification: see Chapter 23 and Chapter 42.

After the boilerplate (and the functional spec), we have the function
specifications for each function in the API spec:

Definition sumarray-spec :=
DECLARE -sumarray
WITH a: val, sh : share, contents : list Z, size: Z
PRE [ -a OF (tptr tint), -n OF tint ]

PROP(readable-share sh;
0 ≤ size ≤ Int.max-signed;
Forall (fun x ⇒ Int.min-signed ≤ x ≤ Int.max-signed) contents)

LOCAL(temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

POST [ tint ]
PROP()
LOCAL(temp ret-temp (Vint (Int.repr (sum-Z contents))))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a).
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The funspec begins, Definition f -spec := DECLARE id f ... where f is the
name of the C function.

A function is specified by its precondition and its postcondition. The
WITH clause quantifies over Coq values that may appear in both the
precondition and the postcondition. The precondition is parameterized by
the C-language function parameters, and the postcondition is parameter-
ized by a identifier ret-temp, which is short for, “the temporary variable
holding the return value.” But really, the Coq variable -a does not have
type (pointer-to-int); it has type ident (see page 8).

An assertion in Verifiable C’s separation logic can be written at either of
two levels: The lifted level, implicitly quantifying over all local-variable
states; or the base level, at a particular local-variable state. Program
assertions are written at the lifted level, for which the notation is
PROP(. . .) LOCAL(. . .) SEP(. . .).

In an assertion PROP(P⃗) LOCAL(Q⃗) SEP(R⃗), the propositions in the
sequence P⃗ are all of Coq type Prop. They describe things that are
forever true, independent of program state. Of course, in the function
precondition above, the statement 0 ≤ size ≤ Int.max-signed is “forever”
true just within the scope of the quantification of the variable size; it is
bound by WITH and spans the PRE and POST assertions.

The LOCAL propositions Q⃗ are variable bindings of type localdef. Here,
the function-parameters a and n are treated as nonaddressable local
variables, or “temp” variables. The localdef (temp -a a) says that (in this
program state) the contents of C local variable -a is the Coq value a. In
general, the contents of a C scalar variable is always a val; this type is
defined by CompCert as,

Inductive val: Type := Vundef: val | Vint: int →val | Vlong: int64 →val
| Vfloat: float →val | Vsingle: float32 →val | Vptr: block → int →val.

The SEP conjuncts R⃗ are spatial assertions in separation logic. In this
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case, there’s just one, a data-at assertion saying that at address a in
memory, there is a data structure of type array[size] of integers, with
access-permission sh, and the contents of that array is the sequence
map Vint contents.

THE POSTCONDITION is introduced by POST [ tint ], indicating that this
function returns a value of type int. There are no PROP statements in
the postcondition, because no forever-true facts exist in the world that
weren’t already true on entry to the function. (This is typical!) The LOCAL
must not mention the function parameters, because they are destroyed on
function exit; it will only mention the return-temporary ret-temp. The SEP
clause mentions all the spatial resources from the precondition, minus
ones that have been freed (deallocated), plus ones that have been malloc’d
(allocated).

So, overall, the specification for sumarray is this: “At any call to sumar-
ray, there exist values a,sh,contents,size such that sh gives at least
read-permission; size is representable as a nonnegative 32-bit signed
integer; function-parameter -a contains value a and -n contains the 32-bit
representation of size; and there’s an array in memory at address a with
permission sh containing contents. The function returns a value equal to
sum-int(contents), and leaves the array unaltered.”

INTEGER OVERFLOW. The C language specification says that a C compiler
may treat signed integer overflow by wrapping around mod 2n, where n
is the word size (e.g., 32). In practice, almost all C compilers (including
CompCert) do this wraparound, and it is part of the CompCert C light
operational semantics. See Chapter 20. The function Int.repr: Z → int
truncates mathematical integers into 32-bit integers by taking the (sign-
extended) low-order 32 bits. Int.signed: int →Z injects back into the signed
integers.

The postcondition guarantees that the value return is Int.repr (sum-Z contents).
But what if

∑
s ≥ 231, so the sum doesn’t fit in a 32-bit signed integer?

Then Int.signed(Int.repr (sum-Z contents)) ̸= (sum-Z contents). In gen-
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eral, for a claim about Int.repr(x) to be useful, one also needs a claim
that 0 ≤ x ≤ Int.max_unsigned or Int.min_signed ≤ x ≤ Int.max_signed.
The caller of this function will probably need to prove Int.min_signed ≤
sum_Z contents ≤ Int.max_signed in order to make much use of the post-
condition.

What if s is the sequence [Int.max-signed; 5; 1-Int.max-signed]? Then∑
s = 6. Does the program really work? Answer: Yes, by the miracle of

modular arithmetic.
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7 Proof of the sumarray program
To prove correctness of a whole program,

1. Collect the function-API specs together into Gprog: list funspec.
2. Prove that each function satisfies its own API spec (with a

semax-body proof).
3. Tie everything together with a semax-func proof.

In progs/verif_sumarray.v, the first step is easy:

Definition Gprog : funspecs := sumarray-spec :: main-spec::nil.

The function specs, built using DECLARE, are listed in the same order
the functions appear in the program (in particular, the same order they
appear in prog.(prog-defs), in sumarray.v).

In addition to Gprog, the API spec contains Vprog, the list of global-
variable type-specs. This is computed automatically by the mk-varspecs
tactic, as shown at the beginning of verif-sumarray.v.

Each C function can call any of the other C functions in the API, so each
semax-body proof is a client of the entire API spec, that is, Vprog and
Gprog. You can see that in the statement of the semax-body lemma for the
-sumarray function:

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.

Here, f-sumarray is the actual function body (AST of the C code) as parsed
by clightgen; you can read it in sumarray.v. You can read body-sumarray
as saying, In the context of Vprog and Gprog, the function body f-sumarray
satisfies its specification sumarray-spec. We need the context in case
the sumarray function refers to a global variable (Vprog provides the
variable’s type) or calls a global function (Gprog provides the function’s
API spec).
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8 start_function
The predicate semax-body states the Hoare triple of the function body,
∆ ⊢ {Pre} c {Post}. Pre and Post are taken from the funspec for f , c is
the body of F, and the type-context ∆ is calculated from the global
type-context overlaid with the parameter- and local-types of the function.

To prove this, we begin with the tactic start-function, which takes care of
some simple bookkeeping and expresses the Hoare triple to be proved.

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.
Proof.
start-function.

The proof goal now looks like this:

Espec : OracleKind
a : val
sh : share
contents : list Z
size : Z
Delta-specs := abbreviate : PTree.t funspec
Delta := abbreviate : tycontext
SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ Int.min-signed ≤x ≤ Int.max-signed) contents
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS := abbreviate : statement
---------------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a))

(Ssequence (Sset -i (Econst-int (Int.repr 0) tint)) MORE-COMMANDS)
POSTCONDITION
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First we have Espec, which you can ignore for now (it characterizes the
outside world, but sumarray.c does not do any I/O). Then a,sh,contents,size
are exactly the variables of the WITH clause of sumarray-spec.

The two abbreviations Delta-spec, Delta are the type-context in which
Floyd’s proof tactics will look up information about the types of the
program’s variables and functions. The hypotheses SH,H,H0 are exactly
the PROP clause of sumarray-spec’s precondition. The POSTCONDITION
is exactly the POST part of sumarray-spec.

To see the contents of an abbreviation, either (1) set your IDE to show
implicit arguments, or (2) (e.g.,) unfold abbreviate in POSTCONDITION.

Below the line we have one proof goal: the Hoare triple of the function
body. In this judgment ∆⊢ {P} c {R}, written in Coq as
semax (∆: tycontext) (P: environ→mpred) (c: statement) (R: ret-assert)

∆ is a type context, giving types of function parameters, local variables,
and global variables; and specifications (funspec) of global functions.

P is the precondition;
c is a command in the C language; and

R is the postcondition. Because a c statement can exit in differ-
ent ways (fall-through, continue, break, return), a ret-assert has
predicates for all of these cases.

Because we do forward Hoare-logic proof, we won’t care about the postcon-
dition until we get to the end of c, so here we hide it away in an abbrevi-
ation. Here, the command c is a long sequence starting with i=0;. . .more,
and we hide the more in an abbreviation MORE-COMMMANDS.

The precondition of this semax has LOCAL and SEP parts taken directly
from the funspec (the PROP clauses have been moved above the line). The
statement (Sset -i (Econst-int (Int.repr 0) tint)) is the AST generated by
clightgen from the C statement i=0;.
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9 forward
We do Hoare logic proof by forward symbolic execution. On page 17 we
show the proof goal at the beginning of the sumarray function body. In a
forward Hoare logic proof of {P} i = 0;more {R} we might first apply the
sequence rule,

{P} i = 0 {Q} {Q}more {R}
{P} i = 0;more {R}

assuming we could derive some appropriate assertion Q.

For many kinds of statements (assignments, return, break, continue) this
is done automatically by the forward tactic. When we execute forward here,
the resulting proof goal is,

Espec, a, sh, contents, size, Delta-spec, SH, H, H0 as before
Delta := abbreviate : tycontext
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS := abbreviate : statement
---------------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -i (Vint (Int.repr 0)); temp -a a;
temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a))

(Ssequence (Sset -s (Econst-int (Int.repr 0) tint)) MORE-COMMANDS)
POSTCONDITION

Notice that the precondition of this semax is really the postcondition of
the i=0; statement; it is the precondition of the next statement, s=0;. It’s
much like the precondition of i=0; what has changed?

• The LOCAL part contains temp -i (Vint (Int.repr 0)) in addition to
what it had before; this says that the local variable i contains
integer value zero.
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• the command is now s=0;more, where MORE-COMMANDS no
longer contains s=0;.

• Delta has changed; it now records the information that i is initial-
ized.

Another forward goes through s=0; to yield a proof goal with a LOCAL
binding for the -s variable.

FORWARD WORKS ON SEVERAL KINDS OF C COMMANDS. In each of the
following cases, the expression E must not contain side effects or function
calls. The variable x must be a nonaddressable local variable.

c1; c2 Sequencing of two commands. The forward tactic will work on c1
first.

(c1; c2) c3 In this case, forward will re-associate the commands using the
seq-assoc axiom, and work on c1; (c2; c3).

x=E; Assignment statement. Expression E must not contain memory
dereferences (loads or stores using ∗prefix, suffix[], or -> operators).
No restrictions on the form of the precondition (except that it must
be in canonical form). The expression &p→next does not actually
load or store (it just computes an address) and is permitted.

x= *E; Memory load.
x= a[E]; Array load.
x= E→fld; Field load.
x= E→f1. f2; Nested field load.
x= E→f1[i]. f2; Fields and subscripts . . . When the right-hand side is

equivalent to a single memory-load via some access path (struct-
fields and array-subscripts) from pointer value p, the SEP compo-
nent of the precondition must contain an appropriately typed item
of the form data-at π t v p such that the path from p in an object of
type t leads to a field (or array slot) that can be loaded into -x. Or,
field-at π t path′ v p′, such that where path′ is a suffix of path, and
p′ is the address reached by starting at p and following the prefix.
Share π must be a readable-share.
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E1 = E2; Memory store. Expression E2 must not dereference memory.
Expression E1 must be equivalent to a single memory store via
some access path (as described above for loads), and there must
be an appropriate storable data-at or field-at. Or E1 may be an
addressable local variable. Share π must be a writable-share.

if (E) C1 else C2 For an if-statement, use forward-if and provide a
postcondition.

while (E) C For a while-loop, use the forward-while tactic (page 22) and
provide a loop invariant.

break; The forward tactic works.
continue; The forward tactic works.
return E; Expression E must not dereference memory, and the pres-

ence/absence of E must match the nonvoid/void return type of the
function. The proof goal left by forward is to show that the precondi-
tion (with appropriate substitution for the abstract variable ret-var)
entails the function’s postcondition.

x = f (a1, . . . ,an); For a function call, use forward-call(W), where W is a
witness, a tuple corresponding (componentwise) to the WITH clause
of the function specification. (If you do just forward, you’ll get a
message with advice about the type of W .)

This results a proof goal to show that the precondition implies
the function precondition and includes an uninstantiated variable:
The Frame represents the part of the spacial precondition that is
unchanged by the function call. It will generally be instantiated by
a call to cancel.
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10 While loops
To prove a while loop by forward symbolic execution, you use the tactic
forward-while, and you must supply a loop invariant. Take the example of
the forward-while in progs/verif_sumarray.v. The proof goal is,

Espec, Delta-specs, Delta
a : val, sh : share, contents : list Z, size : Z
SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ Int.min-signed ≤x ≤ Int.max-signed) contents
POSTCONDITION := abbreviate : ret-assert
MORE-COMMANDS, LOOP-BODY := abbreviate : statement
----------------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a))

(Ssequence
(Swhile (Ebinop Olt (Etempvar -i tint) (Etempvar -n tint) tint)

LOOP-BODY)
MORE-COMMANDS)

POSTCONDITION

A loop invariant is an assertion, almost always in the form of an exis-
tential EX...PROP()LOCAL()SEP(). Each iteration of the loop has a state
characterized by a different value of some iteration variable(s), the the
EX binds that value. For example, the invariant for this loop is,

Definition sumarray-Inv a0 sh contents size :=
EX i: Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a0; temp -i (Vint (Int.repr i)); temp -n (Vint (Int.repr size));

temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a0).
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The existential binds i, the iteration-dependent value of the local variable
named -i. In general, there may be any number of EX quantifiers.

1. the precondition (of the whole loop) implies the loop invariant;
2. the loop-condition expression type-checks (i.e., guarantees to evalu-

ate successfully);
3. the postcondition of the loop body implies the loop invariant;
4. the loop invariant (and not loop condition) is a good precondition for

the proof of the MORE-COMMANDS after the loop.

Let’s take a look at that first subgoal:

(above-the-line hypotheses elided)
1/4

ENTAIL Delta,
PROP()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

⊢EX i : Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr i));

temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))

SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

This is an entailment goal; Chapter 11 shows how to prove such goals.
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11 Entailments
An entailment in separation logic, P ⊢ Q, says that any state satisfying
P must also satisfy Q. What’s in a state? Local-variable environment,
heap (addressable memory), even the state of the outside world. VST’s
type mpred, memory predicate, can be thought of as mem→Prop (but is not
quite the same, for quite technical semantic reasons). That is, an mpred is
a test on the heap only, and cannot “see” the local variables (tempvars) of
the C program.

Type environ is a local/global variable environment, mapping identifiers
(ident) to the values of globals, addressable locals, and tempvars (nonad-
dressable locals). A lifted predicate of type environ→mpred can “see” both
the heap and the local/global variables. The Pre/Post arguments of Hoare
triples (semax ∆ Pre c Post) are lifted predicates.

At present, Verifiable C has a notion of external-world state, in the
Espec: OracleKind, but it is not well developed; enhancements will be
needed for reasoning about input/output.

Our language for lifted predicates uses PROP(P⃗)LOCAL(Q⃗)SEP(R⃗), where
R⃗ is a list of mpreds. Our language for mpreds uses primitives such
as data-at and emp, along with connectives such as the ∗ and −∗ of
separation logic. In both languages there is an EX operator for existential
quantification.

Separation logic’s rule of consequence is shown here

P ⊢ P ′ {P ′} c {Q′} Q′ ⊢Q

{P ′} c {Q′}
∆,P ⊢ P ′ semax ∆ P ′ c Q′ ∆,Q′ ⊢Q

semax ∆ P c Q

at left in traditional notation, and at right as in Verifiable C. The type-
context ∆ constrains values of locals and globals. Using this axiom,
called semax-pre-post on a proof goal semax ∆ P c Q yields three subgoals:
another semax and two (lifted) entailments, ∆,P ⊢ P ′ and ∆,Q ⊢Q′.
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The standard form of a lifted entailment is ENTAIL ∆, PQR ⊢PQR’,
where PQR and PQR’ are typically in the form PROP(P⃗)LOCAL(Q⃗)SEP(R⃗),
perhaps with some EX quantifiers in the front. The turnstile ⊢ is written
in Coq as |--.

Let’s consider the entailment arising from forward-while in the progs/verif_sumarray.v
example:

H : 0 ≤size ≤ Int.max-signed
(other above-the-line hypotheses elided)

1/4
ENTAIL Delta,

PROP()
LOCAL(temp -s (Vint (Int.repr 0)); temp -i (Vint (Int.repr 0));

temp -a a; temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

⊢EX i : Z,
PROP(0 ≤ i ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr i));

temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))

SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

We instantiate the existential with the only value that works here, zero:
Exists 0. Chapter 19 explains how to handle existentials with Intros and
Exists.

Now we use the entailer! tactic to solve as much of this goal as possible
(see Chapter 35). In this case, the goal solves entirely automatically. In
particular, 0 ≤ i ≤ size solves by omega; sublist 0 0 contents rewrites to nil;
and sum-Z nil simplifies to 0.

THE SECOND SUBGOAL of forward-while in progs/verif_sumarray.v is a
type-checking entailment, of the form ENTAIL ∆, PQR ⊢tc-expr ∆ e
where e is (the abstract syntax of) a C expression; in the particular
case of a while loop, e is the negation of the loop-test expression. The
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entailment guarantees that e executes without crashing: all the variables
it references exist, and are initialized; and it doesn’t divide by zero, et
cetera.

In this case, the entailment concerns the expression ¬(i < n),

ENTAIL Delta, PROP(. . .) LOCAL(. . .) SEP(. . .)
⊢tc-expr Delta

(Eunop Onotbool (Ebinop Olt (Etempvar -i tint) (Etempvar -n tint) tint)
tint)

This solves completely via the entailer! tactic. To see why that is, instead
of doing entailer!, do unfold tc-expr; simpl. You’ll see that the right-hand
side of the entailment simplifies down to !!True. That’s because the
typechecker is calculational, as Chapter 25 of Program Logics for Certified
Compilers explains.
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12 Array subscripts
THE THIRD SUBGOAL of forward-while in progs/verif_sumarray.v is the body
of the while loop: {x=a[i]; s+=x; i++;}.

This can be handled by three forward commands, but the first one of these
leaves a subgoal—proving that the subscript i in in range. Let’s examine
the proof goal:

SH : readable-share sh
H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ Int.min-signed ≤x ≤ Int.max-signed) contents
i : Z
HRE : i < size
H1 : 0 ≤ i ≤size
--------------------------------------------------------(1/1)
semax Delta

(PROP ()
LOCAL(temp -a a; temp -i (Vint (Int.repr i));
temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 i contents)))))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a))

(Ssequence
(Sset -x

(Ederef
(Ebinop Oadd (Etempvar -a (tptr tint)) (Etempvar -i tint)

(tptr tint)) tint)) MORE-COMMANDS) POSTCONDITION

The Coq variable i was introduced automatically by forward-while from
the existential variable, the EX i:Z of the loop invariant.

The command x=a[i]; is a load from data-struture a. For this to succeed,
there must be a data-at (or field-at) assertion about a in the SEP clauses
of the precondition; the permission share in that data-at must grant read
access; and the subscript must be in range. Indeed, the data-at is there,
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and the share is taken care of automatically by the hypothesis SH above
the line.

So, forward succeeds; but it leaves an array-bounds subgoal:

ENTAIL Delta, PROP(. . .) LOCAL(. . .) SEP(. . .)
⊢tc-expr Delta (Etempvar -a (tptr tint)) &&

local (̀tc-val tint (Znth i (map Vint (map Int.repr contents)) Vundef)) &&
(tc-expr Delta (Etempvar -i tint) && TT)

The two tc-expr conjuncts are trivial (they are βη-equal to TT) but the
middle conjunct is nontrivial. To clean things up, we run entailer!, which
leaves this subgoal:

HRE : i < Zlength (map Vint (map Int.repr contents))
H1 : 0 ≤ i ≤Zlength (map Vint (map Int.repr contents))

(other above-the-line hypotheses elided)
is-int I32 Signed (Znth i (map Vint (map Int.repr contents)) Vundef)

For the load to succeed, the i element of (map Vint (map Int.repr contents))
must actually be an integer, not an undefined value. To prove this, we use
the Znth-map lemma to move the Znth inside the Vint, leaving the goal,

is-int I32 Signed (Vint (Znth i (map Int.repr contents) Int.zero))

This is an instance of is-int I32 Signed (Vint . . .) which is βη-equal to True.
However, when we rewrote by Znth-map, that left a subgoal,

HRE : i < Zlength (map Vint (map Int.repr contents))
H1 : 0 ≤ i ≤Zlength (map Vint (map Int.repr contents))

(other above-the-line hypotheses elided)
0 ≤ i < Zlength (map Int.repr contents)

This solves straightforwardly as shown in the proof script.
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13 Splitting sublists
In progs/verif_sumarray.v, at the comment “Now we have reached the end
of the loop body,” it is time to prove that the current precondition (which
is the postcondition of the loop body) entails the loop invariant. This is
the proof goal:

H : 0 ≤size ≤ Int.max-signed
H0 : Forall (fun x : Z ⇒ Int.min-signed ≤x ≤ Int.max-signed) contents
HRE : i < size
H1 : 0 ≤ i ≤size

(other above-the-line hypotheses elided)
ENTAIL Delta,
PROP()
LOCAL(temp -i (Vint (Int.add (Int.repr i) (Int.repr 1)));
temp -s

(force-val
(sem-add-default tint tint

(Vint (Int.repr (sum-Z (sublist 0 i contents))))
(Znth i (map Vint (map Int.repr contents)) Vundef)));

temp -x (Znth i (map Vint (map Int.repr contents)) Vundef); temp -a a;
temp -n (Vint (Int.repr size)))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)
⊢EX a0 : Z,

PROP(0 ≤a0 ≤size)
LOCAL(temp -a a; temp -i (Vint (Int.repr a0));
temp -n (Vint (Int.repr size));
temp -s (Vint (Int.repr (sum-Z (sublist 0 a0 contents)))))
SEP(data-at sh (tarray tint size) (map Vint (map Int.repr contents)) a)

The right-hand side of this entailment is just the loop invariant. As usual
at the end of a loop body, there is an existentially quantified variable
that must be instantiated with an iteration-dependent value. In this case
it’s obvious: the quantified variable represents the contents of C local
variable -i, so we do, Exists (i+1).
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The resulting entailmant has many trivial parts and a nontrivial residue.
The usual way to get to the hard part is to run entailer!, which we do now.
After clearing away the irrelevant hypotheses, we have:

H : 0 ≤Zlength (map Vint (map Int.repr contents)) ≤ Int.max-signed
HRE : i < Zlength (map Vint (map Int.repr contents))
H1 : 0 ≤ i ≤Zlength (map Vint (map Int.repr contents))
--------------------------------------(1/1)
Vint (Int.repr (sum-Z (sublist 0 (i + 1) contents))) =
force-val

(sem-add-default tint tint (Vint (Int.repr (sum-Z (sublist 0 i contents))))
(Znth i (map Vint (map Int.repr contents)) Vundef))

The sem-add-default comes from the semantics of C expression evaluation:
adding integers means one thing, but adding an integer to a Vundef is
undefined, and so on. To clear that sludge out of the way, we move the
Znth inside the Vint just as on page 28, then simpl, yielding this goal:

H : 0 ≤Zlength contents ≤ Int.max-signed
HRE : i < Zlength contents
H1 : 0 ≤ i ≤Zlength contents
--------------------------------------(1/1)
Vint (Int.repr (sum-Z (sublist 0 (i + 1) contents))) =
Vint (Int.add (Int.repr (sum-Z (sublist 0 i contents)))

(Int.repr (Znth i contents 0)))

The lemma add-repr: ∀i j, Int.add (Int.repr i) (Int.repr j) = Int.repr (i+ j)
is useful here; followed by f-equal, leaves:

sum-Z (sublist 0 (i + 1) contents) =
sum-Z (sublist 0 i contents) + Znth i contents 0

Now the lemma sublist-split: ∀l m hal, 0≤ l ≤ m ≤ h ≤ |al| →
sublist l h al = sublist l m al ++ sublist m h al is helpful here:
rewrite (sublist-split 0 i (i+1)) by omega. A bit more rewriting with the
theory of sum-Z and sublist finishes the proof.
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14 Returning from a function
In progs/verif_sumarray.v, at the comment “After the loop,” we have
reached the return statement. The forward tactic works here, leaving a
proof goal that the precondition of the return entails the postcondition of
the function-spec. (When this automatically, it leaves no proof goal at all.)
The goal is a lowered entailment (on mpred assertions).

After doing simpl to clear away some C-expression-evaluation sludge, we
have

H4 : Forall (value-fits tint) (map Vint (map Int.repr contents))
H2 : field-compatible (Tarray tint (Zlength . . .) noattr) [] a

(other above-the-line hypotheses elided)
data-at sh (tarray tint (Zlength . . .)) (map Vint (map Int.repr contents)) a
⊢ !!(Vint (Int.repr (sum-Z contents)) =

Vint (Int.repr (sum-Z (sublist 0 i contents))))

The left-hand side of this entailment is a spatial predicate (data-at).
Purely nonspatial facts (H4 and H2) derivable from it have already been
inferred and moved above the line by saturate-local (see Chapter 31).

This entailment’s right-hand side has no spatial predicates. That’s
because the SEP clause of the funspec’s postcondition had exactly the
same data-at clause as we see here in the entailment precondition, and
the entailment-solver called by forward has already cleared it away.

In a situation like this—where saturate-local has already been done and
the r.h.s. of the entailment is purely nonspatial— almost always there’s
no more useful information in the left hand side that hasn’t already
been extracted by saturate-local. We can throw away the l.h.s. with
apply prop-right (or by entailer! but that’s a bit slower).

The remaining subgoal solves easily in the theory of sublists. The proof of
the function sumarray is now complete.
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15 Global variables and main()
C programs may have “extern” global variables, either with explicit
initializers or initialized by default. Any function that accesses a global
variable must have the appropriate spatial assertions in its funspec’s
precondition (and postcondition). But the main function is special: it has
spatial assertions for all the global variables. Then it may pass these on,
piecemeal, to the functions it calls on an as-needed basis.

The function-spec for main always looks the same:

Definition main-spec :=
DECLARE -main WITH u : unit

PRE [] main-pre prog u
POST [ tint ] main-post prog u.

main-pre calculates the precondition automatically from (the list of extern
global variables and initializers of) the program. Then, when we prove
that main satisfies its funspec,

Lemma body-main: semax-body Vprog Gprog f-main main-spec.
Proof.
name four -four.
start-function.

the start-function tactic “unpacks” main-pre into an assertion:

four : val
--------------------------------------(1/1)
semax Delta
(PROP () LOCAL(gvar -four four)
SEP(data-at Ews (tarray tint 4)

(map Vint [Int.repr 1; Int.repr 2; Int.repr 3; Int.repr 4]) four))
(. . . function body. . . )
POSTCONDITION
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The LOCAL clause means that the C global variable -four is at memory
address four. (If we had omitted the name tactic in the proof script above,
then start-functon would have chosen some other name for this value.) See
Chapter 29.

The SEP clause means that there’s data of type “array of 4 integers” at
address four, with access permission Ews and contents [1;2;3;4]. Ews
stands for “external write share,” the standard access permission of
extern global writable variables. See Chapter 38.

Now it’s time to prove the function-call statement, s = sumarray(four,4).
When proving a function call, one must supply a witness for the WITH
clause of the function-spec. The -sumarray function’s WITH clause binds
variables a:val, sh:share, contents:list Z, size: Z, so the type of the witness
will be (val∗(share∗(list Z ∗ list Z))). To choose the witness, examine your
actual parameter values (along with the precondition of the funspec) to see
what witness would be consistent; here, we use (four,Ews,four-contents,4).

forward-call (four,Ews,four-contents,4).

The forward-call tactic (usually) leaves subgoals: you must prove that your
current precondition implies the funspec’s precondition. Here, these solve
easily, as shown in the proof script.

The postcondition of the call statement (which is the precondition of the
next return statement) has an existential, EX vret:val. This comes directly
from the existential in the funspec’s postcondition. To move vret above the
line, simply Intros vret.

Finally, we are at the return statement. The forward tactic is easily able
to prove that the current assertion implies the postcondition of -main,
because main-post is basically an abbreviation for True.
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16 Tying all the functions together
We build a whole-program proof by composing together the proofs of all the
function bodies. Consider Gprog, the list of all the function-specifications:

Definition Gprog : funspecs := sumarray-spec :: main-spec :: nil.

Each semax-body proof says, assuming that all the functions I might
call behave as specified, then my own function-body indeed behaves as
specified:

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.

Note that all the functions I might call might even include “myself,” in the
case of a recursive or mutually recursive function.

This might seem like circular reasoning, but it is actually sound—by the
miracle of step-indexed semantic models, as explained in Chapters 18 and
39 of Program Logics for Certified Compilers.

The rule for tying the functions together is called semax-func, and its use
is illustrated in this theorem, the main proof-of-correctness theorem for
the program sumarray.c:

Lemma all-funcs-correct: semax-func Vprog Gprog (prog-funct prog) Gprog.
Proof.
unfold Gprog, prog, prog-funct; simpl.
semax-func-skipn.
semax-func-cons body-sumarray.
semax-func-cons body-main.
apply semax-func-nil.
Qed.

The calls to semax-func-cons must appear in the same order as the
functions are listed in Gprog and the same order as they appear in
prog.(prog-defs).
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17 Separation logic: EX, ∗, emp, !!
The base level separation logic is built, like any separation logic, from
predicates on “heaplets”. The grammar of base-level separation-logic
expressions is,

R ::= emp empty
TT True
FF False
R1 ∗R2 separating conjunction
R1 && R2 ordinary conjunction
field_at π τ fld v p “field maps-to”
data_at π τ v p “maps-to”
array_at τ π v lo hi array slice
!!P pure proposition
EX x : T, R existential quantification
ALL x : T, R universal quantification (rare)
R1∥R2 disjunction
wand R R′ magic wand R −∗ R′ (rare)
. . . other operators, including user definitions
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18 PROP( ) LOCAL( ) SEP( )
The lifted separation logic can “see” local and global variables of the C
program, in addition to the contents of the heap (pointer dereferences)
that the base level separation logic can see. The canonical form of a lifted
assertion is PROP(P⃗)LOCAL(Q⃗)SEP(R⃗), where P⃗ is a list of propositions
(Prop), where Q⃗ is a list of local-variable definitions (localdef), and R⃗ is a
list of base-level assertions (mpred). Each list is semicolon-separated.

Lifted assertions can occur in other forms than canonical form; in fact,
anything of type environ→mpred is a lifted assertion. But canonical form
is most convenient for forward symbolic execution (Hoare-logic rules).

The existential quantifier EX can also be used on canonical forms, e.g.,
EX x:T, PROP(P⃗)LOCAL(Q⃗)SEP(R⃗).

Entailments in canonical form are normally of the form,
ENTAIL ∆, PQR ⊢ PQR′, where PQR is a lifted assertion in canonical
form, PQR′ is a lifted assertion not necessarily in canonical form, and ∆

is a type context. The ⊢ operator is written |-- in Coq.

This notation is equivalent to (tc-environ ∆ && PQR) ⊢PQR′. That is, ∆
just provides extra assertions on the left-hand side of the entailment.
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19 EX, Intros, Exists
In a canonical-form lifted assertion, existentials can occur at the outside,
or in one of the base-level conjuncts within the SEP clause. This assertion
has both:

ENTAIL ∆,
EX x:Z,
PROP(0≤x) LOCAL(temp -i (Vint (Int.repr x)))
SEP(EX y:Z, !!(x < y) && data-at π tint (Vint (Int.repr y)) p)

⊢EX u: Z,
PROP(0<u) LOCAL()
SEP(data-at π tint (Vint (Int.repr u)) p)

To prove this entailment, one can first move x and y “above the line” by
the tactic Intros a b:

a: Z
b: Z
H: 0 ≤a
H0: a < b

-------------------------------------------------------------------------------
ENTAIL ∆,

PROP() LOCAL(temp -i (Vint (Int.repr a)))
SEP(data-at π tint (Vint (Int.repr b)) p)

⊢EX u: Z,
PROP(0< u) LOCAL()
SEP(data-at π tint (Vint (Int.repr u)) p)

One might just as well say Intros x y to use those names instead of
a b. Note that the propositions (previously hidden inside existential
quantifiers) have been moved above the line by Intros. Also, if there had
been any separating-conjunction operators ∗ within the SEP clause, those
will be “flattened” into semicolon-separated conjuncts within SEP.
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Sometimes, even when there are no existentials to introduce, one wants
to move PROP propositions above the line and flatten the ∗ operators into
semicolons. One can just say Intros with no arguments to do that.

If you want to Intro an existential without gratuitous PROP-introduction
and ∗-flattening, you can just use Intro a, instead of Intros a.

Then, instantiate u by Exists b.

a: Z
b: Z
H: 0 ≤a
H0: a < b

-------------------------------------------------------------------------------
ENTAIL ∆,

PROP() LOCAL(temp -i (Vint (Int.repr a)))
SEP(data-at π tint (Vint (Int.repr b)) p)

⊢PROP(0< b) LOCAL()
SEP(data-at π tint (Vint (Int.repr b)) p)

This entailment proves straightforwardly by entailer!.
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Coq’s standard library has the natural numbers nat and the integers Z.

C-language integer values are represented by the type Int.int (or just int
for short), which are 32-bit two’s complement signed or unsigned integers
with mod-232 arithmetic. Chapter 47 describes the operations on the int
type.

For most purposes, specifications and proofs of C programs should use Z
instead of int or nat. Subtraction doesn’t work well on naturals, and that
screws up many other kinds of arithmetic reasoning. Only when you are
doing direct natural-number induction is it natural to use nat, and so you
might then convert using Z.to-nat to do that induction.

Conversions between Z and int are done as follows:

Int.repr: Z → int.
Int.unsigned: int →Z.
Int.signed: int →Z.

with the following lemmas:

Int.repr_unsigned
Int.repr(Int.unsigned z) = z

Int.unsigned_repr
0≤ z ≤ Int.max_unsigned

Int.unsigned(Int.repr z) = z

Int.repr_signed
Int.repr(Int.signed z) = z

Int.signed_repr
Int.min_signed≤ z ≤ Int.max_signed

Int.signed(Int.repr z) = z

Int.repr truncates to a 32-bit twos-complement representation (losing
information if the input is out of range). Int.signed and Int.unsigned are
different injections back to Z that never lose information.
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When doing proofs about integers, the recommended proof technique is
to make sure your integers never overflow. That is, if the C variable -x
contains the value Vint (Int.repr x), then make sure x is in the appropriate
range. Let’s assume that -x is a signed integer, i.e. declared in C as int x;
then the hypothesis is,

H: Int.min-signed ≤ x ≤ Int.max-signed

If you maintain this hypothesis “above the line”, then Floyd’s tactical
proof automation can solve goals such as Int.signed (Int.repr x) = x. Also,
to solve goals such as,

...
H2 : 0 ≤ n ≤ Int.max-signed
...
------------------------
Int.min-signed ≤ 0 ≤ n

you can use the repable-signed tactic, which is basically just omega
with knowledge of the values of Int.min-signed, Int.max-signed, and
Int.max-unsigned.

To take advantage of this, put conjuncts into the PROP part of your
function precondition such as 0 ≤ i < n; n ≤ Int.max_signed. Then the
start-function tactic will move them above the line, and the other tactics
mentioned above will make use of them.

To see an example in action, look at progs/verif-sumarray.v. The array size
and index (variables size and i) are kept within bounds; but the contents
of the array might overflow when added up, which is why add-elem uses
Int.add instead of Z.add.
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Definition block : Type := positive.

Inductive val: Type :=
| Vundef: val
| Vint: int →val
| Vlong: int64 →val
| Vfloat: float →val
| Vsingle: float32 →val
| Vptr: block → int →val.

Vundef is the undefined value—found, for example, in an uninitialized
local variable.

Vint(i) is an integer value, where i is a CompCert 32-bit integer. These
32-bit integers can also represent short (16-bit) and char (8-bit) values.

Vfloat( f ) is a 64-bit floating-point value.
Vsingle( f ) is a 32-bit floating-point value.

Vptr b z is a pointer value, where b is an abstract block number and z
is an offset within that block. Different malloc operations, or different
extern global variables, or stack-memory-resident local variables, will
have different abstract block numbers. Pointer arithmetic must be done
within the same abstract block, with (Vptrb z)+ (Vint i) = Vptrb (z+ i).
Of course, the C-language + operator first multiplies i by the size of the
array-element that Vptrb z points to.

Vundef is not always treated as distinct from a defined value. For example,
p Vint5 ⊢ p Vundef, where is the data-at operator (Chapter 26).
That is, p Vundef really means ∃v, p v. Vundef could mean “truly
uninitialized” or it could mean “initialized but arbitrary.”



4222 C types (compcert/cfrontend/Ctypes.v)

CompCert C describes C’s type system with inductive data types.

Inductive signedness := Signed | Unsigned.
Inductive intsize := I8 | I16 | I32 | IBool.
Inductive floatsize := F32 | F64.

Record attr : Type := mk-attr {
attr-volatile: bool; attr-alignas: option N

}.
Definition noattr := {| attr-volatile := false; attr-alignas := None |}.

Inductive type : Type :=
| Tvoid: type
| Tint: intsize →signedness →attr →type
| Tlong: signedness →attr →type
| Tfloat: floatsize →attr →type
| Tpointer: type →attr →type
| Tarray: type →Z →attr →type
| Tfunction: typelist →type →calling-convention →type
| Tstruct: ident →attr →type
| Tunion: ident →attr →type

with typelist : Type :=
| Tnil: typelist
| Tcons: type →typelist →typelist.

We have abbreviations for commonly used types:

Definition tint = Tint I32 Signed noattr.
Definition tuint = Tint I32 Unsigned noattr.
Definition tschar = Tint I8 Signed noattr.
Definition tuchar = Tint I8 Unsigned noattr.
Definition tarray (t: type) (n: Z) = Tarray t n noattr.
Definition tptr (t: type) := Tpointer t noattr.
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23 CompSpecs
The C language has a namespace for struct- and union-identifiers, that is,
composite types. In this example, struct foo {int value; struct foo ∗tail} a,b;
the “global variables” namespace contains a,b, and the “struct and union”
namespace contains foo.

When you use CompCert clightgen to parse myprogram.c into myprogram.v,
the main definition it produces is prog, the AST of the entire C program:

Definition prog : Clight.program := {| prog-types := composites; ... |}.

To interpret the meaning of a type expression, we need to look up
the names of its struct identifiers in a composite environment. This
environment, along with various well-formedness theorems about it, is
built from prog as follows:

Require Import floyd.proofauto. (∗ Import Verifiable C library ∗)
Require Import myprogram. (∗ AST of my program ∗)
Instance CompSpecs : compspecs. Proof. make-compspecs prog. Defined.

The make-compspecs tactic automatically constructs the composite specifi-
cations from the program. As a typeclass Instance, CompSpecs is supplied
automatically as an implicit argument to the functions and predicates
that interpret the meaning of types:

Definition sizeof {env: composite-env} (t: type) : Z := ...
Definition data-at- {cs: compspecs} (sh: share) (t: type) (v: val) := ...

@sizeof (@cenv-cs CompSpecs) (Tint I32 Signed noattr) = 4.
sizeof (Tint I32 Signed noattr) = 4.
sizeof (Tstruct -foo noattr) = 8.
@data-at- CompSpecs sh t v ⊢data-at- sh t v

When you have two separately compiled .c files, each will have its own
prog and its own compspecs. See Chapter 58.
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24 reptype
For each C-language data type, we define a representation type, the Type
of Coq values that represent the contents of a C variable of that type.

Definition reptype {cs: compspecs} (t: type) : Type := . . . .

Lemma reptype-ind: ∀(t: type),
reptype t =

match t with
| Tvoid ⇒ unit
| Tint - - - ⇒ val
| Tlong - - ⇒ val
| Tfloat - - ⇒ val
| Tpointer - - ⇒ val
| Tarray t0 - - ⇒ list (reptype t0)
| Tfunction - - - ⇒ unit
| Tstruct id - ⇒ reptype-structlist (co-members (get-co id))
| Tunion id - ⇒ reptype-unionlist (co-members (get-co id))
end

reptype-structlist is the right-associative cartesian product of all the
(reptypes of) the fields of the struct. For example,

struct list {int hd; struct list ∗tl;};
struct one {struct list ∗p};
struct three {int a; struct list ∗p; double x;};

reptype (Tstruct -list noattr) = (val∗val).
reptype (Tstruct -one noattr) = val.
reptype (Tstruct -three noattr) = (val∗(val∗val)).

We use val instead of int for the reptype of an integer variable, because
the variable might be uninitialized, in which case its value will be Vundef.
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25 Uninitialized data, default_val
CompCert represents uninitialized atomic (integer, pointer, float) values
as Vundef : val.

The dependently typed function default-val calculates the undefined value
for any C type:

default-val: ∀ {cs: compspecs} (t: type), reptype t.

For any C type t, the default value for variables of type t will have Coq
type (reptype t).

For example:

struct list {int hd; struct list ∗tl;};

default-val tint = Vundef
default-val (tptr tint) = Vundef
default-val (tarray tint 4) = [Vundef; Vundef; Vundef; Vundef]
default-val (tarray t n) = list-repeat (Z.to-nat n) (default-val t)
default-val (Tstruct -list noattr) = (Vundef, Vundef)
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26 data_at
Consider a C program with these declarations:

struct list {int hd; struct list ∗tl;} L;
int f(struct list a[5], struct list ∗p) { ... }

Assume these definitions in Coq:

Definition t-list := Tstruct -list noattr.
Definition t-arr := Tarray t-list 5 noattr.

Somewhere inside f, we might have the assertion,

PROP() LOCAL(temp -a a, temp -p p, gvar -L L)
SEP(data-at Ews t-list (Vint (Int.repr 0), nullval) L;

data-at π t-arr (list-repeat (Z.to-nat 5) (Vint (Int.repr 1), p)) a;
data-at π t-list (default-val t-list) p)

This assertion says, “Local variable -a contains address a, -p contains
address p, global variable -L is at address L. There is a struct list at L with
permission-share Ews (“extern writable share”), whose hd field contains 0
and whose tl contains a null pointer. At address a there is an array of 5
list structs, each with hd=1 and tl=p, with permission π; and at address
p there is a single list cell that is uninitialized1, with permission π.”

In pencil-and-paper separation logic, we write q i to mean
data-at Tsh tint (Vint (Int.repr i)) q. We write L (0, NULL) to mean
data-at Tsh t-list (Vint (Int.repr 0), nullval) L. We write p (_,_) to mean
data-at π t-list (default-val t-list) p.

In fact, the definition data-at- is useful for the situation p _:

Definition data-at- {cs: compspecs} sh t p := data-at sh t (default-val t) p.

1Uninitialized, or initialized but we don’t know or don’t care what its value is
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27 reptype’, repinj
struct a {double x1; int x2;}; TL;DR
struct b {int y1; struct a y2;} p;
repinj: ∀t: type, reptype’ t →reptype t
reptype t-struct-b = (val∗(val∗val))
reptype’ t-struct-b = (int∗(float∗int))
repinj t_struct_b (i, (x, j)) = (Vint i, (Vfloat x, Vint j))

The reptype function maps C types to the the corresponding Coq types
of (possibly uninitialized) values. When we know a variable is definitely
initialized, it may be more natural to use int instead of val for integer
variables, and float instead of val for double variables. The reptype’
function maps C types to the Coq types of (definitely initialized) values.

Definition reptype’ {cs: compspecs} (t: type) : Type := . . . .

Lemma reptype’-ind: ∀(t: type),
reptype t =

match t with
| Tvoid ⇒ unit
| Tint - - - ⇒ int
| Tlong - - ⇒ Int64.int
| Tfloat - - ⇒ float
| Tpointer - - ⇒ pointer-val
| Tarray t0 - - ⇒ list (reptype’ t0)
| Tfunction - - - ⇒ unit
| Tstruct id - ⇒ reptype’-structlist (co-members (get-co id))
| Tunion id - ⇒ reptype’-unionlist (co-members (get-co id))
end

The function repinj maps an initialized value to the type of possibly
uninitialized values:

Definition repinj {cs: compspecs} (t: type) : reptype’ t →reptype t := . . .



27. reptype’, repinj 48

The program progs/nest2.c (verified in progs/verif_nest2.v) illustrates the
use of reptype’ and repinj.

struct a {double x1; int x2;};
struct b {int y1; struct a y2;} p;

int get(void) { int i; i = p.y2.x2; return i; }
void set(int i) { p.y2.x2 = i; }

Our API spec for get reads as,

Definition get-spec :=
DECLARE -get
WITH v : reptype’ t-struct-b, p : val
PRE []

PROP() LOCAL(gvar -p p)
SEP(data-at Ews t-struct-b (repinj - v) p)

POST [ tint ]
PROP() LOCAL(temp ret-temp (Vint (snd (snd v))))
SEP(data-at Ews t-struct-b (repinj - v) p).

In this program, reptype’ t-struct-b = (int∗(float∗int)), and
repinj t_struct_b (i, (x, j)) = (Vint i, (Vfloat x, Vint j)).

One could also have specified get without reptype’ at all:

Definition get-spec :=
DECLARE -get
WITH i: Z, x: float, j: int, p : val
PRE []

PROP() LOCAL(gvar -p p)
SEP(data-at Ews t-struct-b (Vint (Int.repr i), (Vfloat x, Vint j)) p)

POST [ tint ]
PROP() LOCAL(temp ret-temp (Vint j))
SEP(data-at Ews t-struct-b (Vint (Int.repr i), (Vfloat x, Vint j)) p).
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28 field_at
Consider again the example in progs/nest2.c

struct a {double x1; int x2;};
struct b {int y1; struct a y2;};

The command i = p.y2.x2; does a nested field load. We call y2.x2 the field
path. The precondition for this command might include the assertion,

LOCAL(gvar -pb pb)
SEP( data-at sh t-struct-b (y1,(x1,x2)) pb)

The postcondition (after the load) would include the new LOCALfact,
temp -i x2.

The tactic (unfold-data-at 1%nat) changes the SEP part of the assertion
as follows:

SEP(field-at Ews t-struct-b (DOT -y1) (Vint y1) pb;
field-at Ews t-struct-b (DOT -y2) (Vfloat x1, Vint x2) pb)

and then doing (unfold-field-at 2%nat) unfolds the second field-at,

SEP(field-at Ews t-struct-b (DOT -y1) (Vint y1) pb;
field-at Ews t-struct-b (DOT -y2 DOT -x1) (Vfloat x1) pb;
field-at Ews t-struct-b (DOT -y2 DOT -x2) (Vint x2) pb)

The third argument of field-at represents the path of structure-fields
that leads to a given substructure. The empty path (nil) works too; it
“leads” to the entire structure. In fact, data-at π τ v p is just short for
field-at π τ nil v p.

Arrays and structs may be nested together, in which case the field path
may also contain array subscripts at the appropriate places, using the
notation SUB i along with DOT field.



50

29 Localdefs: temp, lvar, gvar
The LOCAL part of a PROP()LOCAL()SEP() assertion is a list of localdefs
that bind variables to their values or addresses.

Inductive localdef : Type :=
| temp: ident →val → localdef
| lvar: ident →type →val → localdef
| gvar: ident →val → localdef
| sgvar: ident →val → localdef
| localprop: Prop → localdef.

temp i v binds a nonaddressable local variable i to its value v.
lvar i t v binds an addressable local variable i (of type t) to its address v.
gvar i v binds a visible global variable i to its address v.
sgvar i v binds a possibly shadowed global variable i to its address v.

The contents of an addressable (local or global) variable is on the heap,
and can be described in the SEP clause.

int g=2;
int f(void) { int g; int ∗p = &g; g=6; return g; }

In this program, the global variable g is shadowed by the local variable g.
In an assertion inside the function body, one could write

PROP() LOCAL(temp -p q; lvar -g tint q; sgvar -g p}
SEP(data-at Ews tint (Vint (Int.repr 2)) p; data-at Tsh tint (Vint (Int.repr 6)) q)

to describe a shadowed global variable -g that is still there in memory but
(temporarily) cannot be referred to by its name in the C program.
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Normally one does not use this tactic directly, it is invoked as the
first step of entailer or entailer!

Given a lifted entailment ENTAIL ∆, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗) ⊢S,
one often wants to prove it at the base level: that is, with all of P⃗ moved
above the line, with all of Q⃗ out of the way, just considering the base-level
separation-logic conjuncts R⃗.

When ∆, P⃗,Q⃗, R⃗ are concrete, the go-lower tactic does this. Concrete means
that the P⃗,Q⃗ are nil-terminated lists (not Coq variables) that every
element of Q⃗ is manifestly a localdef (not hidden in Coq abstractions),
the identifiers in Q⃗ be (computable to) ground terms, and the analogous
(tree) property for ∆. It is not necessary that ∆, P⃗,Q⃗, R⃗ be fully ground
terms: Coq variables (and other Coq abstractions) can appear anywhere
in P⃗ and R⃗ and in the value parts of ∆ and Q⃗. When the entailment is
not fully concrete, or when there existential quantifiers outside PROP, the
tactic old-go-lower can still be useful.

go-lower moves the propositions P⃗ above the line; when a proposition is
an equality on a Coq variable, substitute the variable.

For each localdef in Q⃗ (such as temp i v), go-lower looks up i in ∆ to derive
a type-checking fact (such as tc-val t v), then introduces it above the line
and simplifies it. For example, if t is tptr tint, then the typechecking fact
simplifies to is-pointer-or-null v.

Then it proves the localdefs in S, if possible. If there are still some
local-environment dependencies remaining in S, it introduces a variable
rho to stand for the run-time environment.

The remaining goal will be of the form R⃗ ⊢ S′, with the semicolons in
R⃗ replaced by the separating conjunction ∗. S′ is the residue of S after
lowering to the base separation logic and deleting its (provable) localdefs.
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31 saturate_local
Normally one does not use this tactic directly, it is invoked by
entailer or entailer!

To prove an entailment R1 ∗R2 ∗ . . .∗Rn ⊢!!(P ′
1 ∧ . . .P ′

n)&&R′
1 ∗ . . .∗R′

m,
first extract all the local (nonspatial) facts from R1∗R2∗. . .∗Rn, use them
(along with other propositions above the line) to prove P ′

1∧. . .P ′
n, and then

work on the separation-logic (spatial) conjuncts R1∗. . .∗Rn ⊢ R′
1∗. . .∗R′

m.

An example local fact: data-at Ews (tarray tint n) v p ⊢ !! (Zlength v = n).
That is, the value v in an array “fits” the length of the array.

The Hint database saturate-local contains all the local facts that can be
extracted from individual spatial conjuncts:

field-at-local-facts:
field-at π t path v p ⊢ !!(field-compatible t path p

∧ value-fits (nested-field-type t path) v)
data-at π t v p ⊢ !!(field-compatible t nil p ∧ value-fits t v)

memory-block-local-facts:
memory-block π n p ⊢ !! isptr p

The assertion (Zlength v = n) is actually a consequence of value-fits when
t is an array type. See Chapter 33.

If you create user-defined spatial terms (perhaps using EX, data-at, etc.),
you can add hints to the saturate-local database as well.

The tactic saturate-local takes a proof goal of the form R1∗R2∗ . . .∗Rn ⊢ S
and adds saturate-local facts for each of the Ri, though it avoids adding
duplicate hypotheses above the line.
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32 field_compatible, field_address
CompCert C light comes with an “address calculus.” Consider this
example:

struct a {double x1; int x2;};
struct b {int y1; struct a y2;};
struct a ∗pa; int ∗q = &(pa→y2.x2);

Suppose the value of -pa is p. Then the value of -q is p+δ; how can we
reason about δ?

Given type t such as Tstruct -b noattr, and path such as (DOT -y2 DOT -x2),
then (nested-field-type t path) is the type of the field accessed by that path,
in this case tint; (nested-field-offset t path) is the distance (in bytes) from
the base of t to the address of the field, in this case (on a 32-bit ma-
chine) 12 or 16, depending on the field-alignment conventions of the
target-machine.

On the Intel x86 architecture, where doubles need not be 8-byte-aligned,
we have,

data-at π t-struct-b (i, ( f , j)) p ⊢
data-at π tint i p ∗ data-at π t-struct-a ( f , j) (offset-val p 12)

but don’t write it that way! For one thing, the converse is not valid:

data-at π tint i p ∗ data-at π t-struct-a ( f , j) (offset-val p 12)
̸⊢ data-at π t-struct-b (i, ( f , j)) p

The reasons: we don’t know that p+12 satisfies the alignment require-
ments for struct b; we don’t know whether p+12 crosses the end-of-
memory boundary. That entailment would be valid in the presence of this
hypothesis: field-compatible t-struct-b nil p : Prop.
which says that an entire struct b value can fit at address p. Note that
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this is a nonspatial assertion, a pure proposition, independent of the
contents of memory.

In order to assist with reasoning about reassembly of data structures,
saturate-local (and therefore entailer) put field-compatible assertions above
the line; see Chapter 31.

Sometimes one needs to name the address of an internal field—for
example, to pass just that field to a function. In that case, one could use
field-offset, but it better to use field-address:

Definition field-address (t: type) (path: list gfield) (p: val) : val :=
if field-compatible-dec t path p
then offset-val (Int.repr (nested-field-offset t path)) p
else Vundef

That is, field-address has “baked in” the fact that the offset is “compatible”
with the base address (is properly aligned, has not crossed the end-of-
memory boundary). And therefore:

data-at π tint i p
∗ data-at π t-struct-a ( f , j) (field-address t-struct-b (DOT -y2 DOT -x2) p)
⊢ data-at π t-struct-b (i, ( f , j)) p
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33 value_fits
The spatial maps-to assertion, data-at π t v p, says that there’s a value v
in memory at address p, filling the data structure whose C type is t (with
permission π). A corollary is value-fits t v: v is a value that actually can
reside in such a C data structure.

Value_fits is a recursive, dependently typed relation that is easier
described by its induction relation; here, we present a simplified version
that assumes that all types t are not volatile:

value-fits t v = tc-val’ t v (when t is an integer, float, or pointer type)
value-fits (tarray t′ n) v = (Zlength v = Z.max 0 n) ∧ Forall (value-fits t′) v
value-fits (Tstruct i noattr) (v1, (v2, (. . . ,vn))) =

value-fits (field-type f1 v1) ∧ . . . ∧ value-fits (field-type fn vn)
(when the fields of struct i are f1, . . . , fn)

The predicate tc-val’ says,

Definition tc-val’ (t: type) (v: val) := v ̸=Vundef → tc-val t v.

Definition tc-val (t: type) (v: val) :=
match t with
| Tvoid ⇒ False
| Tint sz sg - ⇒ is-int sz sg
| Tlong - - ⇒ is-long
| Tfloat F32 - ⇒ is-single
| Tfloat F64 - ⇒ is-float
| Tpointer - - | Tarray - - - | Tfunction - - - ⇒ is-pointer-or-null
| Tstruct - - | Tunion - - ⇒ isptr

end

So, an atomic value (int, float, pointer) fits either when it is Vundef or
when it type-checks. We permit Vundef to “fit,” in order to accommodate
partially initialized data structures in C.
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Since τ is usually concrete, tc-val τ v immediately unfolds to something
like,

TC0: is-int I32 Signed (Vint i)
TC1: is-int I8 Unsigned (Vint c)
TC2: is-int I8 Signed (Vint d)
TC3: is-pointer-or-null p
TC4: isptr q

TC0 says that i is a 32-bit signed integer; this is a tautology, so it will be
automatically deleted by go-lower.

TC1 says that c is a 32-bit signed integer whose value is in the range
of unsigned 8-bit integers (unsigned char). TC2 says that d is a 32-bit
signed integer whose value is in the range of signed 8-bit integers (signed
char). These hypotheses simplify to,

TC1: 0 ≤ Int.unsigned c ≤Byte.max-unsigned
TC2: Byte.min-signed ≤ Int.signed c ≤Byte.max-signed
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The cancel tactic proves associative-commutative rearrangement goals
such as (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5)⊢ A4 ∗ (A5 ∗ A1)∗ (A3 ∗ A2).

If the goal has the form (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5) ⊢ (A4 ∗B1 ∗ A1)∗B2
where there is only a partial match, then cancel will remove the matching
conjuncts and leave a subgoal such as A2 ∗ A3 ∗ A5 ⊢ B1 ∗B2.

cancel solves (A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5) ⊢ A4 ∗TT∗ A1 by absorbing
A2 ∗ A3 ∗ A5 into TT. If the goal has the form

F := ?224 : list(environ→mpred)
(A1 ∗ A2)∗ ((A3 ∗ A4)∗ A5)⊢ A4 ∗ (fold_right sepcon emp F)∗ A1

where F is a frame that is an abbreviation for an uninstantiated logical
variable of type list(environ→mpred), then the cancel tactic will perform
frame inference: it will unfold the definition F, instantiate the variable (in
this case, to A2 :: A3 :: A5 :: nil), and solve the goal. The frame may have
been created by evar(F: list(environ→mpred)), as part of forward symbolic
execution through a function call.

WARNING: cancel can turn a provable entailment into an unprovable
entailment. Consider this:

A∗C ⊢ B∗C
A∗D∗C ⊢ C∗B∗D

This goal is provable by first rearranging to (A ∗C)∗D ⊢ (B∗C)∗D.
But cancel may aggressively cancel C and D, leaving A ⊢ B, which is not
provable. You might wonder, what kind of crazy hypothesis is A∗C ⊢ B∗C;
but indeed such “context-dependent” cancellations do occur in the theory
of linked lists; see ?? and PLCC Chapter 19.

CANCEL DOES not USE βη equality, as this can sometimes be very
slow. That means sometimes cancel leaves a residual subgoal A ⊢ A′

where A =β A′, sometimes the only differences are in (invisible) implicit
arguments. In any case, apply derives-refl to solve such residual goals.
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The entailer and entailer! tactics simplify (or solve entirely) entailments in
either the lifted or base-level separation logic. The entailer never turns a
provable entailment into an unprovable one; entailer! is more aggressive
and somewhat more efficient, but sometimes turns a provable entailment
into an unprovable one, especially in cases related to the WARNING on
page 57; see also ??. We recommend trying entailer! first, especially where
list segments are not involved.

When go-lower is applicable, the entailers start by applying it (see
Chapter 30).

Then: saturate-local (see Chapter 31).

NEXT: on each side of the entailment, gather the propositions to the left:
R1 ∗ (!!P1&&(!!P2&&R2)) becomes !!(P1 ∧P2)&&(R1 ∗R2).

Move all left-hand-side propositions above the line; substitute variables.
Autorewrite with entailer-rewrite, a modest hint database. If the r.h.s. or
its first conjunct is a “valid_pointer” goal (or one of its variants), try to
solve it.

At this point, entailer tries normalize and (if progress) back to NEXT;
entailer! applies cancel to the spatial terms and prove-it-now to each
propositional conjunct.

The result is that either the goal is entirely solved, or a residual entail-
ment or proposition is left for the user to prove.
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36 Normalize
The normalize tactic performs autorewrite with norm and several other
transformations. Normalize can be slow: Many of these simplifications
can be done more efficiently and systematically by entailer or Intros.

The norm rewrite-hint database uses several sets of rules.

Generic separation-logic simplifications.

P ∗emp= P emp∗P = P P &&TT= P TT&&P = P

P &&FF= FF FF&&P = FF P ∗FF= FF FF∗P = FF

P &&P = P (EX _ : _, P)= P local ‘True=TT

Pull EX and !! out of *-conjunctions.

(EX x : A, P)∗Q =EX x : A, P∗Q (EX x : A, P)&&Q =EX x : A, P &&Q

P∗ (EX x : A, Q)=EX x : A, P∗Q P &&(EX x : A, Q)=EX x : A, P &&Q

P ∗ (!!Q &&R)=!!Q &&(P ∗R) (!!Q &&P)∗R =!!Q &&(P ∗R)

Delete auto-provable propositions.

P → (!!P &&Q =Q) P → (!!P =TT)

Integer arithmetic.

n+0= n 0+n = n n∗1= n 1∗n = n sizeof tuchar= 1

align n 1= n (z > 0)→ (align 0 z = 0) (z ≥ 0)→ (Z.max 0 z = z)
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Int32 arithmetic.
Int.sub x x = Int.zero Int.sub x Int.zero = x

Int.add x (Int.neg x) = Int.zero Int.add x Int.zero = x

Int.add Int.zero x = x

x ̸= y→ offset_val(offset_val v i) j = offset_val v (Int.add i j)

Int.add(Int.repr i)(Int.repr j)= Int.repr(i+ j)

Int.add(Int.add z (Int.repr i)) (Int.repr j) = Int.add z (Int.repr(i+ j))

z > 0→ (align 0 z = 0) force_int(Vint i)= i

(min_signed≤ z ≤max_signed)→ Int.signed(Int.repr z)= z

(0≤ z ≤max_unsigned)→ Int.unsigned(Int.repr z)= z

(Int.unsigned i < 2n)→ Int.zero_ext n i = i

(−2n−1 ≤ Int.signed i < 2n−1)→ Int.sign_ext n i = i

map, fst, snd, . . .

map f (x :: y)= f x ::map f y map nil= nil fst(x, y)= x

snd(x, y)= y (isptr v)→ force_ptr v = v isptr (force_ptr v)= isptr v

(is_pointer_or_null v)→ ptr_eq v v = True

Unlifting.

‘ f ρ = f [when f has arity 0] ‘ f a1 ρ = f (a1 ρ) [when f has arity 1]

‘ f a1 a2 ρ = f (a1 ρ) (a2 ρ) [when f has arity 2, etc.] (P ∗Q)ρ = Pρ∗Qρ

(P &&Q)ρ = Pρ&&Qρ (!!P)ρ =!!P !!(P ∧Q)=!!P &&!!Q

(EXx : A, P x)ρ = EXx : A, P xρ ‘(EX x : B, Px)=EX x : B, ‘(Px))

‘(P ∗Q)= ‘P ∗ ‘Q ‘(P &&Q)= ‘P && ‘Q
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Type checking and miscellaneous.

tc_andp tc_TT e = e tc_andp e tc_TT = e

eval_id x (env_set ρ x v)= v

x ̸= y→ (eval_id x (env_set ρ y v)= eval_id x v)

isptr v → (eval_cast_neutral v = v)

(∃t.tc_val t v ∧ is_pointer_type t) → (eval_cast_neutral v = v)

Expression evaluation. (autorewrite with eval, but in fact these
are usually handled just by simpl or unfold.)

deref_noload(tarray t n)= (fun v ⇒ v) eval_expr(Etempvar i t)= eval_id i

eval_expr(Econst_int i t)= ‘(Vint i)

eval_expr(Ebinop op a b t)=
‘(eval_binop op (typeof a) (typeof b)) (eval_expr a) (eval_expr b)

eval_expr(Eunop op a t)= ‘(eval_unop op (typeof a)) (eval_expr a)

eval_expr(Ecast e t)= ‘(eval_cast(typeof e) t) (eval_expr e)

eval_lvalue(Ederef e t)= ‘force_ptr (eval_expr e)

Function return values.

get_result(Some x)= get_result1(x) retval(get_result1 i ρ)= eval_id i ρ

retval(env_set ρ ret_temp v) = v

retval(make_args(ret_temp :: nil) (v :: nil) ρ) = v

ret_type(initialized i ∆)= ret_type(∆)
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Postconditions. (autorewrite with ret-assert.)

normal_ret_assert FF ek vl = FF

frame_ret_assert(normal_ret_assert P) Q = normal_ret_assert (P ∗Q)

frame_ret_assert P emp = P

frame_ret_assert P Q EK_return vl = P EK_return vl ∗ Q

frame_ret_assert(loop1_ret_assert P Q) R =
loop1_ret_assert (P ∗R)(frame_ret_assert Q R)

frame_ret_assert(loop2_ret_assert P Q) R =
loop2_ret_assert (P ∗R)(frame_ret_assert Q R)

overridePost P (normal_ret_assert Q)= normal_ret_assert P

normal_ret_assert P ek vl = (!!(ek=EK_normal)&&(!!(vl=None)&&P))

loop1_ret_assert P Q EK_normal None = P

overridePost P R EK_normal None= P

overridePost P R EK_return = R EK_return

IN ADDITION TO REWRITING, normalize applies the following lemmas:

P ⊢TT FF⊢ P P ⊢ P ∗TT (∀x. (P ⊢Q))→ (EX x : A, P ⊢Q)

(P → (TT⊢Q))→ (!!P ⊢Q) (P → (Q ⊢ R))→ (!!P &&Q ⊢ R)

and does some rewriting and substitution when P is an equality in the
goal, (P → (Q ⊢ R)).

Given the goal x → P, where x is not a Prop, normalize avoids doing an
intro. This allows the user to choose an appropriate name for x.
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The typechecker ensures this about C-program variables: if a variable is
initialized, then it contains a value of its declared type.

Function parameters (accessed by Etempvar expressions) are always
initialized. Nonaddressable local variables (accessed by Etempvar ex-
pressions) and address-taken local variables (accessed by Evar) may be
uninitialized or initialized. Global variables (accessed by Evar) are always
initialized.

The typechecker keeps track of the initialization status of local nonad-
dressable variables, conservatively: if on all paths from function entry
to the current point—assuming that the conditions on if-expressions
and while-expressions are uninterpreted/nondeterministic—there is an
assignment to variable x, then x is known to be initialized.

Addressable local variables do not have initialization status tracked by
the typechecker; instead, this is tracked in the separation logic, by data-at
assertions such as v _ (uninitialized) or v i (initialized).

Proofs using the forward tactic will typically generate proof obligations
(for the user to solve) of the form,

ENTAIL ∆,PROP(P⃗) LOCAL(Q⃗) SEP(R⃗) ⊢ PROP(P⃗ ′) LOCAL(Q⃗′) SEP(R⃗′)

∆ keeps track of which nonaddressable local variables are initialized; says
that all references to local variables contain values of the right type; and
says that all addressable locals and globals point to an appropriate block
of memory.

Using go-lower or entailer on an ENTAIL goal causes a tc-val assertion to
be placed above the line for each initialized tempvar. As explained at
page 55, this tc-val may be simplified into an is-int hypothesis, or even
removed if vacuous.
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The mapsto operator (and related operators) take a permission share,
expressing whether the mapsto grants read permission, write permission,
or some other fractional permission.

Tsh =Share.top

Lsh

a'a

c
d

b

Rsh=Ews

Share.bot

b'

The top share, written Tsh or Share.top, gives total permission: to
deallocate any cells within the footprint of this mapsto, to read, to write.

Share.split Tsh= (Lsh,Rsh)
Share.split Lsh= (a,a′) Share.split Rsh= (b,b′)
a′⊕b = c lub(c,Rsh)= a′⊕Rsh= d
∀sh. writable_share sh → readable_share sh
writable_share Ews readable_share b
writable_share d readable_share c
writable_share Tsh ¬readable_share Lsh

Any share may be split into a left half and a right half. The left and right
of the top share are given distinguished names Lsh, Rsh.

The right-half share of the top share (or any share containing it such as
d) is sufficient to grant write permission to the data: “the right share is
the write share.” A thread of execution holding only Lsh—or subshares
of it such as a,a′—can neither read or write the object, but such shares
are not completely useless: holding any nonempty share prevents other
threads from deallocating the object.

Any subshare of Rsh, in fact any share that overlaps Rsh, grants read
permission to the object. Overlap can be tested using the glb (greatest
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lower bound) operator.

Whenever (mapsto sh t v w) holds, then the share sh must include at
least a read share, thus this give permission to load memory at address v
to get a value w of type t.

To make sure sh has enough permission to write (i.e., Rsh⊂ sh, we can say
writable-share sh : Prop.

Memory obtained from malloc comes with the top share Tsh. Writable
extern global variables and stack-allocated addressable locals (which of
course must not be deallocated) come with the “extern writable share”
Ews which is equal to Rsh. Read-only globals come with a half-share of
Rsh.

Sequential programs usually have little need of any shares except the
Tsh and Ews. However, many function specifications can be parame-
terized over any share (example: page ??), and this sort of generalized
specification makes the functions usable in more contexts.

In C it is undefined to test deallocated pointers for equality or inequal-
ities, so the Hoare-logic rule for pointer comparison also requires some
permission-share; see page 66.
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39 Pointer comparisons
In C, if p and q are expressions of type pointer-to-something, testing
p=q or p!=q is defined only if: p is NULL, or points within a currently
allocated object, or points at the end of a currently allocated object; and
similarly for q. Testing p<q (etc.) has even stricter requirements: p and
q must be pointers into the same allocated object.

Verifiable C’s enforces this by creating “type-checking” conditions for
the evaluation of such pointer-comparison expressions. Before reasoning
about the result of evaluating expression p=q, you must first prove
tc-expr ∆ (Ebinop Oeq (Etempvar -p (tptr tint)) (Etempvar -q (tptr tint))),
where tc-expr is the type-checking condition for that expression. This
simplifies into an entailment with the current precondition on the left,
and denote-tc-comparable p q on the right.

The entailer(!) has a solver for such proof goals. It relies on spatial terms
on the l.h.s. of the entailment, such as data-at π t v p which guarantees
that p points to something.

The file progs/verif_ptr_compare.v illustrates pointer comparisons.
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40 Proof of the reverse program
Program Logics for Certified Compilers, Chapter 3 describes the notion of
list segments and their application to a proof of the list-reverse function.
(Chapters 2 and 3 available free here; the whole e-book available cheap
here or here; or buy the hardcover.)

In this chapter we will demonstrate this proof in Verifiable C, on the C
program in progs/reverse.c. Please open your CoqIDE or Proof General to
progs/verif_reverse.v.

/∗ reverse.c ∗/
#include <stddef.h>

struct list {int head; struct list ∗tail;};

struct list three[] = { {1, three+1}, {2, three+2}, {3, NULL} };

struct list ∗reverse (struct list ∗p) {
struct list ∗w, ∗t, ∗v;
w = NULL;
v = p;
while (v) {

t = v→tail; v→tail = w; w = v; v = t;
}
return w;

}

int main (void) {
struct list ∗r; int s;
r = reverse(three); s = sumlist(r); return s;

}

As usual, in progs/verif_reverse.v we import the clightgen-produced file
reverse.v and build CompSpecs and Vprog (see page 12, Chapter 23,
Chapter 42).

http://vst.cs.princeton.edu/download/PLCC-to-chapter-3.pdf#page=20
http://www.ebooks.com/1642304/program-logics-for-certified-compilers/appel-andrew-w-dockins-robert-hobor-aquinas-bering/
http://www.amazon.com/Program-Logics-Certified-Compilers-Andrew-ebook/dp/B00P82T41G
http://www.amazon.com/Program-Logics-Certified-Compilers-Andrew/dp/110704801X/
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For the struct list used in this program, struct list {int head; struct list ∗tail;};
we can define the notion of list segment x σ

⇝ z with a recursive definition:

Fixpoint lseg (sh: share)
(contents: list val) (x z: val) : mpred :=

match contents with
| h::hs ⇒ !! (x<>z) &&

EX y:val, data-at sh (Tstruct -list noattr) (h,y) x
∗ lseg sh hs y z

| nil ⇒ !! (ptr-eq x z) && emp
end.

But instead, we make a general theory of list segments (over any C struct
type, no matter how many fields). Here, we import the LsegSpecial module
of that theory, covering the “ordinary” case appropriate for the reverse.c
program.

Require Import progs.list-dt. Import LsegSpecial.

Then we instantiate that theory for our particular struct list by providing
the listspec operator with the names of the struct (-list) and the link field
(-tail).

Instance LS: listspec -list -tail.
Proof. eapply mk-listspec; reflexivity. Defined.

All other fields (in this case, just -head) are treated as “data” fields.

Now, lseg LS π σ p q is a list segment starting at pointer p, ending at q,
with permission-share π and contents σ.

In general, with multiple data fields, the type of σ is constructed via
reptype (see Chapter 24). In this example, with one data field, the type of
σ computes to list val.

We’ll skip over the sumlist function and its verification.
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The API spec (see also Chapter 6) for reverse is,

Definition reverse-spec :=
DECLARE -reverse
WITH sh: share, contents: list val, p: val
PRE [ -p OF (tptr t-struct-list) ]
PROP(writable-share sh)
LOCAL(temp -p p)
SEP(lseg LS sh contents p nullval)

POST [ (tptr t-struct-list) ]
EX p:val,
PROP() LOCAL(temp ret-temp p)
SEP(lseg LS sh (rev contents) p nullval).

The precondition says (for p the function parameter) p σ
⇝ nil, and the

postcondition says that (for p the return value) p rev σ
⇝ nil. This is basically

the specification given in PLCC Chapter 3, page 20.

Also, the list must have write permission (writable-share sh), because the
list-reverse is an in-place destructive update.

In your IDE, enter the Lemma body-reverse and move after the start-function
tactic. As expected, the precondition for the function-body is

PROP() LOCAL(temp -p p) SEP(lseg LS sh contents p nullval).

After forward through two assignment statements (w=NULL; v=p;) the
LOCAL part also contains temp -v p; temp -w (Vint (Int.repr 0)).

The loop invariant for the while loop is quite similar to the one given in
PLCC Chapter 3 page 20:

∃σ1,σ2. σ= rev(σ1) ·σ2 ∧ v σ2⇝ 0∗w σ1⇝ 0

It’s quite typical for loop invariants to existentially quantify over the
values that are different iteration-to-iteration.
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Definition reverse-Inv (sh: share) (contents: list val) : environ→mpred :=
EX cts1: list val, EX cts2 : list val, EX w: val, EX v: val,

PROP(contents = rev cts1 ++ cts2)
LOCAL(temp -w w; temp -v v)
SEP(lseg LS sh cts1 w nullval; lseg LS sh cts2 v nullval).

We apply forward-while with this invariant, and (as usual) we have four
subgoals: (1) precondition implies loop invariant, (2) loop invariant
implies typechecking of loop-termination test, (3) loop body preserves
invariant, and (4) after the loop.

(1) To prove the precondition implies the loop invariant, we instantiate
cts1 with nil and cts2 with contents; we instantiate w with NULL and v
with p. But this leaves the goal,

ENTAIL ∆, PROP() LOCAL(temp -v p; temp -w nullval; temp -p p)
SEP(lseg LS sh contents p nullval)

⊢PROP(contents = rev [] ++ contents) LOCAL(temp -w nullval; temp -v p)
SEP(lseg LS sh [] nullval nullval;

lseg LS sh contents p nullval)

The PROP and LOCAL parts are trivially solvable by the entailer. We can
remove the SEP conjunct (lseg LS sh [] nullval nullval) by rewriting in the
theory of list segments:

Lemma lseg-eq: ∀(LS : listspec -list -tail) (π : share) (l : list -) (v : val),
is-pointer-or-null v →
lseg LS π l v v = !!(l = []) && emp.

(2) The type-checking condition is not trivial, as it is a pointer comparison
(see Chapter 39), but the entailer! solves it anyway.

(3) The loop body starts by assuming the loop invariant and the truth of
the loop test. Their propositional parts have already been moved above the
line at the comment (* loop body preserves invariant *). That is, HRE: isptr v
says that the loop test is true, and H: contents = rev cts1 ++ cts2 is from
the invariant.
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The first statement in the loop body, t=v→tail; loads from the list cell at
v. But our SEP assertion for v is, lseg LS sh cts2 v nullval. A list-segment
isn’t necessarily loadable, i.e., we cannot necessarily fetch v→tail; what
we need to unfold the lseg, using this lemma:

Lemma lseg-nonnull: ∀(LS : listspec -list -tail) (π : share) (l : list -) v,
typed-true (tptr t-struct-list) v →
lseg LS π l v nullval =

EX h:-, EX r:-, EX y:val,
!!(l=h::r ∧ is-pointer-or-null y) &&
list-cell LS π h x ∗
field-at π t-struct-list (SUB -tail) y x ∗
lseg LS π r y z.

That is, if v ̸= nullval, then the list-segment v σ
⇝ nullval is not empty: there

exists a record x (h, y) and a residual list y σ′
⇝ nullval. Actually, here it

is more convenient to use a corollary of this lemma, semax-lseg-nonnull,
that is adapted to unfolding the first lseg in the SEP clause of a semax
precondition. The typed-true premise solves easily by entailer!.

NOW THAT THE FIRST LIST-CELL IS UNFOLDED, it’s easy to go forward
through the four commands of the loop body. Now we are (* at end of loop
body, re-establish invariant *).

We choose appropriate values to instantiate the existentials: Exists (h::cts1,r,v,y).
Note that for some reason the four separate EX quantifiers have been
uncurried into a single 4-tuple EX; this may be adjusted in a future
version of Verifiable C. Then entailer! leaves two subgoals:

----------------------------------------------(1/2)
rev cts1 ++ h :: r = (rev cts1 ++ [h]) ++ r
----------------------------------------------(2/2)

list-cell LS sh h v ∗ field-at sh t-struct-list (DOT -tail) w v
∗ lseg LS sh cts1 w nullval

⊢ lseg LS sh (h :: cts1) v nullval
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Indeed, entailer! always leaves at most two subgoals: at most one propo-
sitional goal, and at most one cancellation (spatial) goal. Here, the
propositional goal is easily dispatched in the theory of (Coq) lists.

The second subgoal requires unrolling the r.h.s. list segment, which we
do with lseg-unroll. Then we appropriately instantiate some existentials,
call on the entailer! again, and the goal is solved.

(4) After the loop, we must prove that the loop invariant and not the
loop-test condition is a sufficient precondition for the next statement(s).
In this case, the next statement is a return; one can always go forward
through a return, but now we have to prove that our current assertion
implies the function postcondition. This is fairly straightfoward.
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41 list_cell, assert_PROP
In progs/verif_reverse.v, in the Lemma body-sumlist, move to the comment
(* Prove that loop body preserves invariant *), and then three or four lines
to just before assert-PROP.

This proof state is very similar to the one in the loop body of the
body-reverse lemma (page 71):

contents, cts1, cts2 : list int; p, t, y : val; i : int
SH : readable-share sh
HRE : isptr t
H : contents = cts1 ++ i :: cts2
H1 : is_pointer_or_null y
semax Delta

(PROP () LOCAL(temp -t t; temp -s (Vint (sum-int cts1)))
SEP(list-cell LS sh (Vint i) t;

field-at sh list-struct [StructField -tail] y t;
lseg LS sh (map Vint cts2) y nullval; lseg LS sh (map Vint cts1) p t))

h= t→ head; . . .
POSTCONDITION

Here, the operator list-cell (from the general theory of list segments)
describes “all the fields but the link.” In our particular LS there is exactly
one data field, which fact we state as a lemma:

Lemma list-cell-eq: ∀sh i p ,
sepalg.nonidentity sh →
field-compatible t-struct-list [] p →
list-cell LS sh (Vint i) p =
field-at sh t-struct-list (DOT -head) (Vint i) p.

To rewrite by list-cell-eq, we need to get a field-compatible fact above the
line. Such facts are promiscuously introduced by saturate-local as part
of calling entailer!, but we are not currently proving an entailment. No
matter; we can prove one artificially:
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assert-PROP (field-compatible t-struct-list nil t) as FC by entailer!.

The assert-prop tactic creates an ENTAIL proof goal with the current semax
precondition on the left, and the named proposition on the right. That
proposition is then put above the line; really this is a use of the rule of
consequence. It’s an easy way to get this field-compatible fact above the
line.
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42 Global variables
In the C language, “extern” global variables live in the same namespace
as local variables, but they are shadowed by any same-name local defi-
nition. In the C light operational semantics, global variables live in the
same namespace as addressable local variables (both referenced by the
expression-abstract-syntax constructor Evar), but in a different names-
pace from nonaddressable locals (expression-abstract-syntax constructor
Etempvar).1

In the program-AST produced by clightgen, globals (and their initializers)
are listed as Gvars in the prog-defs. These are accessed (automatically)
in two ways by the Verifiable C program logic. First, their names and
types are gathered into Vprog as shown on page 12 (try the Coq command
Print Vprog to see this list). Second, their initializers are translated into
data-at conjuncts of separation logic as part of the main-pre definition (see
page 32).

When proving semax-body for the main function, the start-function tactic
takes these definitions from main-pre and puts them in the precondition of
the function body. In VST version 1.6, in some cases this is done using the
more-primitive mapsto operator2, in other cases it uses the higher-level
(and more standard) data-at3.

1This difference in namespace treatment cannot matter in a program translated by
CompCert clightgen from C, because no as-translated expression will exercise the differ-
ence.

2For example, examine the proof state in progs/verif_reverse.v immediately after
start_function in Lemma body_main; and see the conversion to data_at done by the
setup_globals lemma in that file.

3For example, examine the proof state in progs/verif_sumarray.v immediately after
start_function in Lemma body_main.
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The C-language for loop has the general form,

for (init; test; incr) body

To solve a proof goal of this form (or when this is followed by other
statements in sequence), use the tactic

forward-for Inv PreIncr PostCond

where Inv, PreIncr, PostCond are assertions (in PROP/LOCAL/SEP form):

Inv is the loop invariant, that holds immediately after the init command
is executed and before each time the test is done; PreIncr is the invarint
that holds immediately after the loop body and right before the incr;

PostCond is the assertion that holds after the loop is complete (whether
by a break statement, or the test evaluating to false).

In VST 1.6, forward_for is slightly broken, but you can use
forward_for_simple_bound (described below) or forward_while
(since a for loop is often a special case of a while loop).

MANY FOR-LOOPS HAVE THIS SPECIAL FORM,
for (init; id < hi; id++) body such that the expression hi will evaluate
to the same value every time around the loop. This upper-bound expres-
sion need not be a literal constant, it just needs to be invariant. Then you
can use the tactic,

forward-for-simple-bound n (EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗).

where n is the upper bound: a Coq value of type Z such that hi
will evaluate to n. The loop invariant is given by the expression
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(EX i:Z, PROP(P⃗) LOCAL(Q⃗) SEP(R⃗), where i is the value (in each it-
eration) of the loop iteration variable id. This tactic generates simpler
subgoals than the general forward-for tactic.

When the loop has the form, for (id=lo; id < hi; id++) body
where lo is a literal constant, then the forward-for-simple-bound tactic will
generate slightly simpler subgoals.
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44 Manipulating preconditions
In some cases you cannot go forward until the precondition has a certain
form. For example, to go forward through t=v→tail; there must be a
data-at or field-at in the SEP clause of the precondition that gives a value
for -tail field of t. page 71 describes a situation where a list segment had
to be unfolded to expose such a SEP conjunct.

Faced with the proof goal, semax ∆ (PROP(P⃗)LOCAL(Q⃗)SEP(R⃗)) c Post
where PROP(P⃗)LOCAL(Q⃗)SEP(R⃗) does not match the requirements for
forward symbolic execution, you have several choices:

• Use the rule of consequence explicitly:
apply semax-pre with PROP(P⃗ ′)LOCAL(Q⃗′)SEP(R⃗′),
then prove ENTAIL ∆, P⃗;Q⃗; R⃗ ⊢ P⃗ ′;Q⃗′; R⃗′.

• Use the rule of consequence implicitly, by using tactics (page 79)
that modify the precondition.

• Do rewriting in the precondition, either directly by the standard
rewrite and change tactics, or by normalize (page 59).

• Extract propositions and existentials from the precondition, by
using Intros (page 37) or normalize.

• Flatten stars into semicolons, in the SEP clause, by Intros.
• Use the freezer (page 100) to temporarily “frame away” spatial

conjuncts.
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TACTICS FOR MANIPULATING PRECONDITIONS. In many of these tactics
we select specific conjucts from the SEP items, that is, the semicolon-
separated list of separating conjuncts. These tactic refer to the list by
zero-based position number, 0,1,2,. . . .

For example, suppose the goal is a semax or entailment containing
PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j). Then:

focus_SEP i j k. Bring items #i, j,k to the front of the SEP list.

focus-SEP 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
focus-SEP 0. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;d;e;f;g;h;i;j).
focus-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b;d;a;c;e;f;g;h;i;j)
focus-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d;b;a;c;e;f;g;h;i;j)

gather_SEP i j k. Bring items #i, j,k to the front of the SEP list and
conjoin them into a single element.

gather-SEP 5. results in PROP(P⃗)LOCAL(Q⃗)SEP(f;a;b;c;d;e;g;h;i;j).
gather-SEP 1 3. results in PROP(P⃗)LOCAL(Q⃗)SEP(b∗d;a;c;e;f;g;h;i;j)
gather-SEP 3 1. results in PROP(P⃗)LOCAL(Q⃗)SEP(d∗b;a;c;e;f;g;h;i;j)

replace_SEP i R. Replace the ith element the SEP list with the assertion
R, and leave a subgoal to prove.

replace-SEP 3 R. results in PROP(P⃗)LOCAL(Q⃗)SEP(a;b;c;R;e;f;g;h;i;j).

with subgoal PROP(P⃗)LOCAL(Q⃗)SEP(d)⊢ R.

replace_in_pre S S′. Replace S with S′ anywhere it occurs in the precon-
dition then leave (P⃗;Q⃗; R⃗)⊢ (P⃗;Q⃗; R⃗)[S′/S] as a subgoal.

frame_SEP i j k. Apply the frame rule, keeping only elements i, j,k of the
SEP list. See Chapter 45.
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Separation Logic supports the Frame rule,

Frame
{P} c {Q}

{P ∗F} c {Q∗F}

To use this in a forward proof, suppose you have the proof goal,

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) c1; c2; c3 Post

and suppose you want to “frame out” R2 for the duration of c1; c2, and
have it back again for c3. First you rewrite by seq-assoc to yield the goal

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) (c1; c2); c3 Post

Then eapply semax-seq’ to peel off the first command (c1; c2) in the new
sequence:

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R1;R2) c1; c2 ?88

semax ∆′ ?88 c3 Post

Then frame-SEP 0 2 to retain only R0;R2.

semax ∆ PROP(P⃗)LOCAL(Q⃗)SEP(R0;R2) c1; c2 . . .

Now you’ll see that (in the precondition of the second subgoal) the
unification variable ?88 has been instantiated in such a way that R2 is
added back in.
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46 malloc/free
If your program uses malloc or free, you must declare and specify these as
external functions. But even then, free is difficult to specify: “How do it
know?” the size of the object being freed?

The answer is that the malloc/free system maintains an implicit extra field
(before the official “beginning” of the object) with the length. One could
indeed reason about this in separation logic, but for some applications it
is overkill.

For simpler-to-specify memory allocation, you may want to change the in-
terface of the free function. We do this in our example definitions of malloc
and free in progs/queue.c and their specifications in progs/verif_queue.v.

http://www.thecoffeeplace.com/jokes/aaaaaayc.html
http://www.thecoffeeplace.com/jokes/aaaaaayc.html
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The VST program logic uses CompCert’s 32-bit integer type.

Inductive comparison := Ceq | Cne | Clt | Cle | Cgt | Cge.
Int.wordsize: nat = 32.
Int.modulus : Z = 232.
Int.max-unsigned : Z = 232 −1.
Int.max-signed : Z = 231 −1.
Int.min-signed : Z = −231.

Int.int : Type.
Int.unsigned : int →Z.
Int.signed : int →Z.
Int.repr : Z → int.

Int.zero := Int.repr 0.

(* Operators of type int->int->bool *)
Int.eq Int.lt Int.ltu Int.cmp(c:comparison) Int.cmpu(c:comparison)

(* Operators of type int->int *)
Int.neg Int.not

(* Operators of type int->int->int *)
Int.add Int.sub Int.mul Int.divs Int.mods Int.divu Int.modu
Int.and Int.or Int.xor Int.shl Int.shru Int.shr Int.rol Int.ror Int.rolm

Lemma eq-dec: ∀(x y: int), {x = y} + {x <> y}.
Theorem unsigned-range: ∀ i, 0 ≤unsigned i < modulus.
Theorem unsigned-range-2: ∀ i, 0 ≤unsigned i ≤max-unsigned.
Theorem signed-range: ∀ i, min-signed ≤signed i ≤max-signed.
Theorem repr-unsigned: ∀ i, repr (unsigned i) = i.
Lemma repr-signed: ∀ i, repr (signed i) = i.
Theorem unsigned-repr:

∀z, 0 ≤z ≤max-unsigned →unsigned (repr z) = z.
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Theorem signed-repr:
∀z, min-signed ≤z ≤max-signed →signed (repr z) = z.

Theorem signed-eq-unsigned:
∀x, unsigned x ≤max-signed →signed x = unsigned x.

Theorem unsigned-zero: unsigned zero = 0.
Theorem unsigned-one: unsigned one = 1.
Theorem signed-zero: signed zero = 0.

Theorem eq-sym: ∀x y, eq x y = eq y x.
Theorem eq-spec: ∀(x y: int), if eq x y then x = y else x <> y.
Theorem eq-true: ∀x, eq x x = true.
Theorem eq-false: ∀x y, x <> y →eq x y = false.

Theorem add-unsigned: ∀x y, add x y = repr (unsigned x + unsigned y).
Theorem add-signed: ∀x y, add x y = repr (signed x + signed y).
Theorem add-commut: ∀x y, add x y = add y x.
Theorem add-zero: ∀x, add x zero = x.
Theorem add-zero-l: ∀x, add zero x = x.
Theorem add-assoc: ∀x y z, add (add x y) z = add x (add y z).

Theorem neg-repr: ∀z, neg (repr z) = repr (-z).
Theorem neg-zero: neg zero = zero.
Theorem neg-involutive: ∀x, neg (neg x) = x.
Theorem neg-add-distr: ∀x y, neg(add x y) = add (neg x) (neg y).

Theorem sub-zero-l: ∀x, sub x zero = x.
Theorem sub-zero-r: ∀x, sub zero x = neg x.
Theorem sub-add-opp: ∀x y, sub x y = add x (neg y).
Theorem sub-idem: ∀x, sub x x = zero.
Theorem sub-add-l: ∀x y z, sub (add x y) z = add (sub x z) y.
Theorem sub-add-r: ∀x y z, sub x (add y z) = add (sub x z) (neg y).
Theorem sub-shifted: ∀x y z, sub (add x z) (add y z) = sub x y.
Theorem sub-signed: ∀x y, sub x y = repr (signed x -signed y).
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Theorem mul-commut: ∀x y, mul x y = mul y x.
Theorem mul-zero: ∀x, mul x zero = zero.
Theorem mul-one: ∀x, mul x one = x.
Theorem mul-assoc: ∀x y z, mul (mul x y) z = mul x (mul y z).
Theorem mul-add-distr-l: ∀x y z, mul (add x y) z = add (mul x z) (mul y z).
Theorem mul-signed: ∀x y, mul x y = repr (signed x ∗ signed y).

and many more axioms for the bitwise operators, shift operators,
signed/unsigned division and mod operators.
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48 CompCert C abstract syntax
The CompCert verified C compiler translates standard C source programs
into an abstract syntax for CompCert C, and then translates that into
abstract syntax for C light. Then VST Separation Logic is applied to
the C light abstract syntax. C light programs proved correct using the
VST separation logic can then be compiled (by CompCert) to assembly
language.

C light syntax is defined by these Coq files from CompCert:

Integers. 32-bit (and 8-bit, 16-bit, 64-bit) signed/unsigned integers.
Floats. IEEE floating point numbers.
Values. The val type: integer + float + pointer + undefined.
AST. Generic support for abstract syntax.
Ctypes. C-language types and structure-field-offset computations.
Clight. C-light expressions, statements, and functions.

You will see C light abstract syntax constructors in the Hoare triples
(semax) that you are verifying. We summarize the constructors here.

Inductive expr : Type :=
(∗ 1 ∗) | Econst-int: int →type →expr
(∗ 1.0 ∗) | Econst-float: float →type →expr (∗ double precision ∗)
(∗ 1.0f0 ∗) | Econst-single: float →type →expr (∗ single precision ∗)
(∗ 1L ∗) | Econst-long: int64 →type →expr
(∗ x ∗) | Evar: ident →type →expr
(∗ x ∗) | Etempvar: ident →type →expr
(∗ ∗e ∗) | Ederef: expr →type →expr
(∗ &e ∗) | Eaddrof: expr →type →expr
(∗ ∼e ∗) | Eunop: unary-operation →expr →type →expr
(∗ e+e ∗) | Ebinop: binary-operation →expr →expr →type →expr
(∗ (int)e ∗) | Ecast: expr →type →expr
(∗ e.f ∗) | Efield: expr → ident →type →expr.
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Inductive unary-operation := Onotbool | Onotint | Oneg | Oabsfloat.
Inductive binary-operation := Oadd | Osub | Omul | Odiv | Omod
| Oand | Oor | Oxor | Oshl | Oeq | One | Olt | Ogt | Ole | Oge.

Inductive statement : Type :=
(∗ /∗∗/;∗) | Sskip : statement
(∗ E1=E2; ∗) | Sassign : expr →expr →statement (∗ memory store ∗)
(∗ x=E; ∗) | Sset : ident →expr →statement (∗ tempvar assign ∗)
(∗ x= f (...); ∗) | Scall: option ident →expr → list expr →statement
(∗ x=b(...); ∗) | Sbuiltin: option ident →external-function →typelist →

list expr →statement
(∗ s1; s2 ∗) | Ssequence : statement →statement →statement
(∗ if() else {} ∗) | Sifthenelse : expr →statement →statement →statement
(∗ for (;;s2) s1 ∗) | Sloop: statement →statement →statement
(∗ break; ∗) | Sbreak : statement
(∗ continue; ∗) | Scontinue : statement
(∗ return E; ∗) | Sreturn : option expr →statement

| Sswitch : expr → labeled-statements →statement
| Slabel : label →statement →statement
| Sgoto : label →statement.
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49 C light semantics
The operational semantics of C light statements and expressions is
given in compcert/cfrontend/Clight.v. We do not expose these semantics
directly to the user of Verifiable C. Instead, the statement semantics is
reformulated as semax, an axiomatic (Hoare-logic style) semantics. The
expression semantics is reformulated in veric/expr.v and veric/Cop2.v as a
computational big-step evaluation semantics. In each case, a soundness
proof relates the Verifiable C semantics to the CompCert Clight semantics.

Rules for semax are given in veric/SeparationLogic.v—but the user
rarely uses these rules directly. Instead, derived lemmas regarding
semax are proved in floyd/*.v and Floyd’s forward tactic applies them
(semi)automatically.

The following functions (from veric/expr.v) define expression evaluation:

eval-id {CS: compspecs} (id: ident) : environ →val.
(∗ evaluate a tempvar ∗)

eval-var {CS: compspecs} (id: ident) (ty: type) : environ →val.
(∗ evaluate an lvar or gvar, addressable local or global variable ∗)

eval-cast (t t’: type) (v: val) : val.
(∗ cast value v from type t to type t’, but beware! There are

three types involved, including native type of v. ∗)
eval-unop (op: unary-operation) (t1 : type) (v1 : val) : val.
eval-binop{CS:compspecs} (op:binary-operation) (t1 t2: type) (v1 v2: val): val.
eval-lvalue {CS: compspecs} (e: expr) : environ →val.

(∗ evalue an l-expression, one that denotes a loadable/storable place∗)
eval-expr {CS: compspecs} (e: expr) : environ →val.

(∗ evalue an r-expression, one that is not storable ∗)

The environ argument is for looking up the values of local and global
variables. However, in most cases where Verifiable C users see eval-lvalue
or eval-expr—in subgoals generated by the forward tactic—all the variables
have already been substituted by values. Thus the environment is not
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needed.

The expression-evaluation functions call upon several helper functions
from veric/Cop2.v:

sem-cast: type →type →val →option val.
sem-cast-∗ (∗ several helper functions for sem-cast ∗)
bool-val: type →val →option bool.
bool-val-∗: (∗ helper functions ∗)
sem-notbool: type →val →option val.
sem-neg: type →val →option val.
sem-sub {CS: compspecs}: type →type →val →val →option val.
sem-sub-∗: (∗ helper functions ∗)
sem-add {CS: compspecs}: type →type →val →val →option val.
sem-add-∗: (∗ helper functions ∗)
sem-mul: type →type →val →val →option val.
sem-div: type →type →val →val →option val.
sem-mod: type →type →val →val →option val.
sem-and: type →type →val →val →option val.
sem-or: type →type →val →val →option val.
sem-xor: type →type →val →val →option val.
sem-shl: type →type →val →val →option val.
sem-shr: type →type →val →val →option val.
sem-cmp: comparison →type →type →(...) →val →val →option val.
sem-unary-operation: unary-operation →type →val →option val.
sem-binary-operation {CS: compspecs}:

binary-operation →type →type →mem →val →val →option val.

The details are not so important to remember. The main point is that Coq
expressions of the form sem-. . . should simplify away, provided that their
arguments are instantiated with concrete operators, concrete constructors
Vint/Vptr/Vfloat, and concrete C types. The int values (etc.) carried inside
Vint/Vptr/Vfloat do not need to be concrete: they can be Coq variables.
This is the essence of proof by symbolic execution.
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Many of the Hoare rules, such as the one on page ??,

semax_set_forward
∆⊢ {▷P} x := e {∃v. x = (e[v/x])∧P[v/x]}

have the operater ▷ (pronounced “later”) in their precondition.

The modal assertion ▷P is a slightly weaker version of the assertion P.
It is used for reasoning by induction over how many steps left we intend
to run the program. The most important thing to know about ▷later is
that P is stronger than ▷P, that is, P ⊢ ▷P; and that operators such as
∗, && ,ALL (and so on) commute with later: ▷(P ∗Q)= (▷P)∗ (▷Q).

This means that if we are trying to apply a rule such as semax-set-forward;
and if we have a precondition such as

local (tc-expr ∆ e) && ▷ local (tc-temp-id id t ∆ e) && (P1 ∗ ▷P2)

then we can use the rule of consequence to weaken this precondition to

▷ (local (tc-expr ∆ e) && local (tc-temp-id id t ∆ e) && (P1 ∗ P2))

and then apply semax-set-forward. We do the same for many other kinds
of command rules.

This weakening of the precondition is done automatically by the forward
tactic, as long as there is only one ▷later in a row at any point among the
various conjuncts of the precondition.

A more sophisticated understanding of ▷ is needed to build proof rules for
recursive data types and for some kinds of object-oriented programming;
see PLCC Chapter 19.
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This experimental appeared in VST release 1.5, but is broken in VST 1.6.

To handle assignment statements with nested loads, such as x[i]=y[i]+z[i];
the recommended method is to break it down into smaller statments
compatible with separation logic: t=y[i]; u=z[i]; x[i]=t+u;. However,
sometimes you may be proving correctness of preexisting or machine-
generated C programs. Verifiable C has an experimental nested-load
mechanism to support this.

We use an expression-evaluation relation e ⇓ v which comes in two
flavors:

rel-expr : expr →val →rho →mpred.
rel-lvalue: expr →val →rho →mpred.

The assertion rel-expr e v ρ says, “expression e evaluates to value v in
environment ρ and in the current memory.” The rel-lvalue evaluates the
expression as an l-value, to a pointer to the data.

Evaluation rules for rel-expr are listed here:

rel-expr-const-int: ∀(i : int) τ (P : mpred) (ρ : environ),
P ⊢rel-expr (Econst-int i τ) (Vint i) ρ.

rel-expr-const-float: ∀( f : float) τ P (ρ : environ),
P ⊢rel-expr (Econst-float f τ) (Vfloat f ) ρ.

rel-expr-const-long: ∀(i : int64) τ P ρ,
P ⊢rel-expr (Econst-long i τ) (Vlong i) ρ.

rel-expr-tempvar: ∀(id : ident) τ (v : val) P ρ,
Map.get (te-of ρ) id = Some v →
P ⊢rel-expr (Etempvar id τ) v ρ.

rel-expr-addrof: ∀(e : expr) τ (v : val) P ρ,
P ⊢rel-lvalue e v ρ →
P ⊢rel-expr (Eaddrof e τ) v ρ.

rel-expr-unop: ∀P (e1 : expr) (v1 v : val) τ op ρ,
P ⊢rel-expr e1 v1 ρ →
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Cop.sem-unary-operation op v1 (typeof e1) = Some v →
P ⊢rel-expr (Eunop op e1 τ) v ρ.

rel-expr-binop: ∀(e1 e2 : expr) (v1 v2 v : val) τ op P ρ,
P ⊢rel-expr e1 v1 ρ →
P ⊢rel-expr e2 v2 ρ →
(∀ m : Memory.Mem.mem,
Cop.sem-binary-operation op v1 e (typeof e1) v2 (typeof e2) m = Some v) →

P ⊢rel-expr (Ebinop op e1 e2 τ) v ρ.
rel-expr-cast: ∀(e1 : expr) (v1 v : val) τ P ρ,

P ⊢rel-expr e1 v1 ρ →
Cop.sem-cast v1 (typeof e1) τ = Some v →
P ⊢rel-expr (Ecast e1 τ) v ρ.

rel-expr-lvalue: ∀(a : expr) (sh : Share.t) (v1 v2 : val) P ρ,
P ⊢rel-lvalue a v1 ρ →
P ⊢mapsto sh (typeof a) v1 v2 ∗ TT →
v2 <> Vundef →
P ⊢rel-expr a v2 ρ.

rel-lvalue-local: ∀(id : ident) τ (b : block) P ρ,
P ⊢ !!(Map.get (ve-of ρ) id = Some (b, τ)) →
P ⊢rel-lvalue (Evar id τ) (Vptr b Int.zero) ρ.

rel-lvalue-global: ∀(id : ident) τ (v : val) P ρ,
P
⊢ !!(Map.get (ve-of ρ) id = None ∧

Map.get (ge-of ρ) id = Some (v, τ)) →
P ⊢rel-lvalue (Evar id τ) v ρ.

rel-lvalue-deref: ∀(a : expr) (b : block) (z : int) τ P ρ,
P ⊢rel-expr a (Vptr b z) ρ →
P ⊢rel-lvalue (Ederef a τ) (Vptr b z) ρ.

rel-lvalue-field-struct: ∀(i id : ident) τ e (b : block) (z : int) (fList : fieldlist) att (δ : Z) P ρ,
typeof e = Tstruct id fList att →
field-offset i fList = Errors.OK δ →
P ⊢rel-expr e (Vptr b z) ρ →
P ⊢rel-lvalue (Efield e i τ) (Vptr b (Int.add z (Int.repr δ))) ρ.
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The primitive nested-load assignment rule is,

Axiom semax-loadstore:
∀v0 v1 v2 ∆ e1 e2 sh P P’,

writable-share sh →
P ⊢ !! (tc-val (typeof e1) v2)

&& rel-lvalue e1 v1
&& rel-expr (Ecast e2 (typeof e1)) v2
&& ( (̀mapsto sh (typeof e1) v1 v0) ∗ P’) →

semax ∆ (▷ P) (Sassign e1 e2)
(normal-ret-assert ( (̀mapsto sh (typeof e1) v1 v2) ∗ P’)).

but do not use this rule! It is best to use a derived rule, such as,

Lemma semax-loadstore-array:
∀n vi lo hi t1 (contents: Z →reptype t1) v1 v2 ∆ e1 ei e2 sh P Q R,
reptype t1 = val →
type-is-by-value t1 →
legal-alignas-type t1 = true →
typeof e1 = tptr t1 →
typeof ei = tint →
PROPx P (LOCALx Q (SEPx R))

⊢rel-expr e1 v1
&& rel-expr ei (Vint (Int.repr vi))
&& rel-expr (Ecast e2 t1) v2 →

nth-error R n = Some ( (̀array-at t1 sh contents lo hi v1)) →
writable-share sh →
tc-val t1 v2 →
in-range lo hi vi →
semax ∆ (▷ PROPx P (LOCALx Q (SEPx R)))
(Sassign (Ederef (Ebinop Oadd e1 ei (tptr t1)) t1) e2)
(normal-ret-assert
(PROPx P (LOCALx Q (SEPx
(replace-nth n R

(̀array-at t1 sh (upd contents vi (valinject - v2)) lo hi v1)))))).



51. NESTED LOADS 93

Proof-automation support is available for semax-loadstore-array and
rel-expr, in the form of the forward-nl (for “forward nested loads”) tactic.
For example, with this proof goal,

semax Delta
(PROP ()
LOCAL( (̀eq (Vint (Int.repr i))) (eval-id -i); (̀eq x) (eval-id -x);
(̀eq y) (eval-id -y); (̀eq z) (eval-id -z))

SEP( (̀array-at tdouble Tsh (Vfloat oo fx) 0 n x);
(̀array-at tdouble Tsh (Vfloat oo fy) 0 n y);
(̀array-at tdouble Tsh (Vfloat oo fz) 0 n z)))

(Ssequence
(Sassign (∗ x[i] = y[i] + z[i]; ∗)
(Ederef (Ebinop Oadd (Etempvar -x (tptr tdouble)) (Etempvar -i tint)

(tptr tdouble)) tdouble)
(Ebinop Oadd
(Ederef (Ebinop Oadd (Etempvar -y (tptr tdouble)) (Etempvar -i tint)

(tptr tdouble)) tdouble)
(Ederef (Ebinop Oadd (Etempvar -z (tptr tdouble)) (Etempvar -i tint)

(tptr tdouble)) tdouble) tdouble))
MORE-COMMANDS)

POSTCONDITION

the tactic-application forward-nl yields the new proof goal,

semax Delta
(PROP ()
LOCAL( (̀eq (Vint (Int.repr i))) (eval-id -i); (̀eq x) (eval-id -x);
(̀eq y) (eval-id -y); (̀eq z) (eval-id -z))

SEP
( (̀array-at tdouble Tsh

(upd (Vfloat oo fx) i (Vfloat (Float.add (fy i) (fz i)))) 0 n x);
(̀array-at tdouble Tsh (Vfloat oo fy) 0 n y);
(̀array-at tdouble Tsh (Vfloat oo fz) 0 n z)))

MORE-COMMANDS
POSTCONDITION
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Chapter 21)

This chapter is needed only by “power users.”
Assertions in our Hoare triple of separation are presented as env→mpred,
that is, functions from environment to memory-predicate, using our natu-
ral deduction system NatDed(mpred) and separation logic SepLog(mpred).

Given a separation logic over a type B of formulas, and an arbitrary
type A, we can define a lifted separation logic over functions A → B.
The operations are simply lifted pointwise over the elements of A. Let
P,Q : A → B, let R : T → A → B then define,

(P &&Q) : A → B := fun a ⇒ Pa&&Qa
(P ∥Q) : A → B := fun a ⇒ Pa∥Qa

(∃x.R(x)) : A → B := fun a ⇒ ∃x. Rxa
(∀x.R(x)) : A → B := fun a ⇒ ∀x. Rxa
(P −→Q) : A → B := fun a ⇒ Pa −→Qa

(P ⊢Q) : A → B := ∀a. Pa ⊢Qa
(P ∗Q) : A → B := fun a ⇒ Pa∗Qa

(P −∗Q) : A → B := fun a ⇒ Pa −∗Qa

In Coq we formalize the typeclass instances LiftNatDed, LiftSepLog, etc., as
shown below. For a type B, whenever NatDed B and SepLog B (and so on)
have been defined, the lifted instances NatDed (A→B) and SepLog (A→B)
(and so on) are automagically provided by the typeclass system.

Instance LiftNatDed(A B: Type){ND: NatDed B}: NatDed (A→B):=
mkNatDed (A →B)

(∗andp∗) (fun P Q x ⇒ andp (P x) (Q x))
(∗orp∗) (fun P Q x ⇒ orp (P x) (Q x))
(∗exp∗) (fun {T} (F: T →A →B) (a: A) ⇒ exp (fun x ⇒ F x a))
(∗allp∗) (fun {T} (F: T →A →B) (a: A) ⇒ allp (fun x ⇒ F x a))
(∗imp∗) (fun P Q x ⇒ imp (P x) (Q x))
(∗prop∗) (fun P x ⇒ prop P)
(∗derives∗) (fun P Q ⇒ ∀x, derives (P x) (Q x))
- - - - - - - - - - - - - - - - - -.
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Instance LiftSepLog (A B: Type) {NB: NatDed B}{SB: SepLog B}
: SepLog (A →B).

apply (mkSepLog (A →B) -(fun ρ ⇒ emp)
(fun P Q ρ ⇒ P ρ ∗ Q ρ) (fun P Q ρ ⇒ P ρ -∗ Q ρ)).

(∗ fill in proofs here ∗)

In particular, if P and Q are functions of type environ→mpred then we can
write P ∗Q, P &&Q, and so on.

Consider this assertion:

fun ρ ⇒ mapsto sh tint (eval-id -x ρ) (eval-id -y ρ)
∗ mapsto sh tint (eval-id -u ρ) (Vint Int.zero)

which might appear as the precondition of a Hoare triple. It represents
(x y)∗ (u 0) written in informal separation logic, where x, y,u are
C-language variables of integer type. Because it can be inconvenient
to manipulate explicit lambda expressions and explicit environment
variables ρ, we may write it in lifted form,

(̀mapsto sh tint) (eval-id -x) (eval-id -y)
∗ (̀mapsto sh tint) (eval-id -u) (̀Vint Int.zero)

Each of the first two backquotes lifts a function from type val→val→mpred
to type (environ→val)→(environ→val)→(environ→mpred), and the third
one lifts from val to environ→val.
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Aside from the standard operators and axioms of separation logic, the
core separation logic has just two primitive spatial (memory) predicates:

Parameter address-mapsto:
memory-chunk →val →share →share →address →mpred.

Parameter func-ptr : funspec →val →mpred.

func-ptr φ v means that value v is a pointer to a function with
specification φ; see ??.

address-mapsto expresses what is typically written x y in separation
logic, that is, a singleton heap containing just value y at address x.

From this, we construct two low-level derived forms:

mapsto (sh:share) (t:type) (v w: val) : mpred describes a singleton
heap with just one value w of (C-language) type t at address v, with
permission-share sh.

mapsto- (sh:share) (t:type) (v:val) : mpred describes an uninitialized
singleton heap with space to hold a value of type t at address v, with
permission-share sh.

From these primitives, field-at and data-at are constructed.
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54 Function pointers
Parameter func-ptr : funspec →val →mpred.
Definition func-ptr’ f v := func-ptr f v && emp.

func-ptr φ v means that value v is a pointer to a function with
specification φ.
func-ptr’ φ v is a form more suitable to be a conjunct of a SEP clause.

Verifiable C’s program logic is powerful enough to reason expressively
about function pointers (see PLCC Chapters 24 and 29). However, the
Floyd proof-automation system does not have much support for proving
such programs at present.
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Chapter 12)

These axioms of separation logic are often useful, although generally it is
the automation tactics (entailer,cancel) that apply them.

pred-ext: P⊢Q → Q⊢P → P=Q.
derives-refl: P ⊢P.
derives-trans: P ⊢Q → Q ⊢R → P⊢R.
andp-right: X⊢P → X⊢Q → X⊢(P&&Q).
andp-left1: P⊢R → P&&Q ⊢R.
andp-left2: Q⊢R → P&&Q ⊢R.
orp-left: P⊢R → Q⊢R → P||Q ⊢R.
orp-right1: P⊢Q → P⊢ Q||R.
orp-right2: P⊢R → P⊢ Q||R.
exp-right: ∀{B: Type}(x:B)(P:mpred)(Q: B →mpred),

P⊢Q x → P⊢ EX x:B, Q.
exp-left: ∀{B: Type}(P:B →mpred)(Q:mpred),

(∀ x, P x ⊢Q) → EX x:B,P ⊢Q.
allp-left: ∀{B}(P: B →mpred) x Q, P x⊢Q → ALL x:B,P⊢Q.
allp-right: ∀{B}(P: mpred)(Q:B →mpred),

(∀ v, P⊢ Q v) → P⊢ ALL x:B,Q.
prop-left: ∀(P: Prop) Q, (P →(TT⊢Q)) → !!P ⊢Q.
prop-right: ∀(P: Prop) Q, P → (Q⊢ !!P).
not-prop-right: ∀(P:mpred)(Q:Prop), (Q →(P⊢FF)) → P⊢ !!(∼Q).

sepcon-assoc: (P∗Q)∗R = P∗(Q∗R).
sepcon-comm: P Q, P∗Q = Q∗P.
sepcon-andp-prop: P∗(!!Q && R) = !!Q && (P∗R).
derives-extract-prop: (P →Q ⊢R) → !!P && Q ⊢R.
sepcon-derives: P⊢P’ → Q⊢Q’ → P∗Q ⊢P’∗Q’.
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56 Obscure higher-order axioms
imp-andp-adjoint: P&&Q⊢R ↔ P⊢(Q−→R).
wand-sepcon-adjoint: P∗Q⊢R ↔P ⊢Q−∗R.
ewand-sepcon: (P∗Q)−◦ R = P −◦ (Q −◦ R).
ewand-TT-sepcon: ∀(P Q R: A),

(P∗Q)&&(R−◦TT) ⊢(P &&(R−◦TT))∗(Q && (R−◦TT)).
exclude-elsewhere: P∗Q ⊢(P &&(Q−◦ TT))∗Q.
ewand-conflict: P∗Q⊢FF → P&&(Q−◦ R) ⊢FF

now-later: P ⊢▷P.
later-K: ▷ (P−→Q) ⊢(▷P −→▷Q).
later-allp: ∀T (F: T→mpred), ▷ (ALL x:T, F x) = ALL x:T, ▷ (F x).
later-exp: ∀T (F: T→mpred), EX x:T, ▷ (F x) ⊢▷ (EX x: F x).
later-exp’: ∀T (any:T) F, ▷ (EX x: F x) = EX x:T, ▷ (F x).
later-imp: ▷ (P−→Q) = (▷P −→▷Q).
loeb: ▷P ⊢P →TT ⊢P.
later-sepcon: ▷ (P ∗ Q) = ▷P ∗ ▷Q.
later-wand: ▷ (P −∗ Q) = ▷P −∗ ▷Q.
later-ewand: ▷ (P −◦ Q) = (▷P) −◦ (▷Q).
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57 Proving larg(ish) programs
When your program is not all in one .c file, see also Chapter 58. Whether
or not your program is all in one .c file, you can prove the individual
function bodies in separate .v files. This uses less memory, and (on a
multicore computer with parallel make) saves time. To do this, put your
API spec (up to the construction of Gprog in one file; then each semax-body
proof in a separate file that imports the API spec.

EXTRACTION OF SUBORDINATE SEMAX-GOALS. To ease memory pressure
and recompilation time, it is often advisable to partition the proof of a
function into several lemmas. Any proof state whose goal is a semax-
term can be extracted as a stand-alone statement by invoking tactic
semax_subcommand V G F. The three arguments are as in the statement
of surrounding semax-body lemma, i.e. are of type varspecs, funspecs, and
function.

The subordinate tactic mkConciseDelta V G F ∆ can also be invoked
individually, to concisely display the type context ∆ as the application of
a sequence of initializations to the host function’s func_tycontext.

THE FREEZER. A distinguishing feature of separation logic is the frame
rule, i.e. the ability to modularly verify a statement w.r.t. its minimal
resource footprint. Unfortunately, being phrased in terms of the syntatic
program structure, the standard frame rule does not easily interact with
forward symbolic execution as implemented by the Floyd tactics (and
many other systems), as these continuously rearrange the associativity
of statement sqeuencing to peel off the redex of the next forward,
and (purposely) hide the program continuation as the abbreviation
MORE_COMMANDS.

Resolving this conflict, Floyd’s freezer abstraction provides a means for
flexible framing, by implementing a veil that opaquely hides selected
items of a SEP clause from non-symbolic treatment by non-freezer tactics.
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The freezer abstraction consists of two main tactics, freeze N F and
thaw F, where N : list nat and F is a user-supplied (fresh) Coq name. The
result of applying freeze [i1; . . . ; in] F to a semax goal is to remove items
i1, . . . , in from the precondition’s SEP clause, inserting the item FRZL F
at the head of the SEP list, and adding a hypothesis F := abbreviate to
Coq’s proof context.

The term FRZL F participates symbolically in all non-freezer tactics just
like any other SEP item, so can in particular be canceled, and included in
a function call’s frame. Unfolding a freezer is not tied to the associativity
structure of program statements but can be achieved by invoking thaw F,
which simply replaces FRZL F by the the list of F ’s constiuents. As
multiple freezers can coexists and freezers can be arbitrarily nested,
SEP-clauses R effectively contain forests of freezers, each constituent
being thawable independently and freezer-level by freezer-level.

Wrapping single forward or forward_call commands in a freezer often
speeds up the processing time noticably, as invocations of subordinate
tactics entailer, cancel, etc. are supplied with smaller and more symbolic
proof goals. In our experience, applying the freezer throughout the proof
of an entire function body typically yields a speedup of about 30% on
average with improvements of up to 55% in some cases, while also easing
the memory pressure and freeing up valuable real estate on the user’s
screen.

A more invasive implementation of a freezer-like abstraction would
refine the PROP(P) LOCAL(Q) SEP(R) structure to terms of the form
PROP(P) LOCAL(Q) SEP(R) FR(H) where H : list mpred. Again, terms
in H would be treated opaquely by all tactics, and freezing/thawing
would correspond to transfer rules between R and H. In either case,
forward symbolic execution is reconciled with the frame rule, and the
use of the mechanism is sound engineering practice as documentation of
programmer’s insight is combined with performance improvements.
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58 Separate compilation, semax_ext
What to do when your program is spread over multiple .c files.

CODE PREPARATION. In order to separate the namespaces of multiple
files compiled by CompCert’s clightgen tool, it is necessary to apply

python fix_clightgen.py file1.v ...fileN.v

The script reads in the named files, concisely renames variables etc by
making up new positives, and writes the modified files back to the given
names.
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59 Catalog of tactics/lemmas
Below is an alphabetic catalog of the major floyd tactics. In addition to
short descriptions, the entries indicate whether a tactic (or tactic notation)
is typically user-applied [u], primarily of internal use [i] or is expected to
be used at development-time but unlikely to appear in a finished proof
script [d]. We also mention major interdependencies between tactics, and
their points of definition.

cancel (tactic; page 57) Deletes identical spatial conjuncts from both
sides of a base-level entailment.

derives_refl (lemma) A ⊢ A. Useful after cancel to handle βη-equality;
see page 57.

derives_refl’ (lemma) A = B → A ⊢ B.
entailer (tactic; page 58, page 24) Proves (lifted or base-level) entail-

ments, possibly leaving a residue for the user to prove. The more
aggressive entailer! should usually be used, but it sometimes turns a
provable goal into an unprovable goal.

drop_LOCAL n (tactic, where n : nat). Removes the nth entry of a the
LOCAL block of a semax or ENTAIL precondition.

forward (tactic; page ??) Do forward Hoare-logic proof through one C
statement (assignment, break, continue, return).

forward_call ARGS (tactic; page ??, page 33) Forward Hoare-logic proof
through one C function-call, where ARGS is a witness for the WITH
clause of the funspec.

forward_for (tactic, page 76) This tactic does not work well in VST 1.6.
Use forward-for-simple-bound when applicable, or else forward-while.

forward_for_simple_bound n Inv (tactic, page 76) When a for-loop has
the form for (init; i < hi; i++) where the upper-bound hi is a loop-
invariant expression, then use this tactic: n is the value of hi, and
Inv is the loop invariant, which must start with an EX that binds
the iteration-dependent value of variable i.

forward_seq (tactic)
mkConciseDelta V G F ∆ (tactic) Applicable to a proof state with a

semax goal. Simplies the ∆ component to the application of a
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sequence of initializations to the host function’s func_tycontext.
Used to prepare the current proof goal for abstracting/factoring out
as a separate lemma.

semax_subcommand V G F (tactic) Applicable to a proof state with
a semax goal. Extracts the current proof state as a stand-alone
statement that can be copy-and pasted to a separate file. The three
arguments should be copied from the statement of surrounding
semax-body lemma: V : varspecs,G : funspecs,F : function.
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