Developing and Mechanizing Semantic Models
for Program Logics

Aquinas Hobot Robert Dockin$

INational University of Singapore

2Princeton University

Nov. 28, 2010 / APLAS 2010

Outline

@ Introduction and Background

Goals

Semantic Methods for Program Logics

Approximation and Separation

Mechanized Semantic Library
@ Example 1: Types for the polymorphiccalculus with references
©® Example 2: While programs with separation

@ Example 3: Concurrent Cminor

@® Supplemental Information

Outline

@ Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

Major Goals for this Tutorial

Review two program logics:

@ Types in the polymorphia-calculus
@® Separation logic

Discuss a program logic that combines features from both:
® concurrent separation logic with first-class locks

As we go we show how to develop semantic models for these
logics. We demonstrate the first two as self-contained elesnp
we give the third as an outline of a more complicated system.

We are particularly interested in mechanization in Coq

Why use semantic methods?

Two approaches to proving soundness: Semantic and Syntacti

In the last 20 years, syntactic methods (Wright-Felleigseg,
induction on typing judgments) have been more popular

We prefer semantic methods—developing models of our
program logics and proving the logics sound w.r.t. the model

10 years ago, syntactic methods had major advantages fplepeo
who wanted desirable program logic features like imprdaiea
guantification. However, the state of the art has advanceubd-g
semantic solutions are now available and ready for deplayme

Why use semantic methods?

There is some evidence that semantic methods work better for
larger projectse.g.with better modularity and scaling
[BDH+08].

Semantic methods can be easier in mechanized setérgs;
most mechanized Hoare logics have semantic-style ags®rtio
even when the soundness proofs are done syntactically.

For high-reliability applications, the trusted computingse can
be smaller since semantic methods require theorem checkers
whereas syntactic methods requmetdaheorem checkers

Still, at the end, it is still a matter of taste—if you have haotd
semantic methods then why not give them a try!

Why useour semantic methods?

e \We (and others at Princeton) have been focused on developing
and mechanizing semantic methods for 10 years.

e Our techniques are available as a (BSD-licensed) librarthey
can be rapidly applied to a new project. We have releasedaeve
examples that can be modified for this purpose.

e Good “proof engineering’—techniques that help mechaionat

e Itis relatively easy to develop toy languages and models tha
completely break when you want to make them more realistic.
The techniqgues we have developed will scale to fully-réalis
settings.

e \We continue to improve the library; you will be able to take
advantage without having to mechanize those techniques
yourself.

Approximation and Separation

Approximation is a term we use to mean a certain collection of
mathematical tools which solve knotty problems arising nvoee
needs to associate invariants with memory locations. Tasid
example is\ calculus with references; the invariants are the types of
the reference cells.

Separ ation refers to a fairly recent idea of explicitly reasoning about
disjoint or nonoverlapping resources in a program logge pimary

use is to cleanly handle the issue of pointer nonaliasingnguiages
with addressable memory. It is especially useful for désog and
reasoning about inductive (tree-structured) data strastu

Citations for Approximation

Semantics of Types for Mutable State. Amal J. Ahmed.
Princeton University PhD thesis TR-713-04, 2004.

A Very Modal Model of a Modern, Major, General Type System.
Andrew W. Appel, Paul-Andre Mellies, Christopher D. Rioths,
and Jerome Vouillon. POPL 2007, January 2007, 109-122.

A Theory of Indirection via Approximation. Aquinas Hobor,
Robert Dockins, and Andrew W. Appel. POPL 2010, Jan 2010,
171-185.

A promising alternate approach based on metric spacesn@tilbe
discussed in this talk):

The category-theoretic solution of recursive metric-gpac
equations. L. Birkedal, K. Stagvring, and J. Thamsborg.
Theoretical Computer Science, 411:4102-4122, 2010.
Step-indexed kripke models over recursive worlds. 2010. L.
Birkedal, B. Reus, J. Schwinghammer, K. Stgvring, J.
Thamsborg, and H. Yang. To appear, POPL 2011.

Citations for Separation

Separation Logic: A Logic for Shared Mutable Data Structure
John Reynolds. LICS 2002, July 2002, 55-74.

Resources, Concurrency and Local Reasoning. Peter W.
O’Hearn. TCS vol. 375, May 2007, 271-307.

Permission Accounting in Separation Logic. Richard Barnat
Cristiano Calcagno, Peter W. O’Hearn, and Matthew Parkinso
POPL 2005, January 2005, 259-270.

Local Action and Abstract Separation Logic. C. CalcagnaVP.
O’Hearn, and H. Yang. LICS 2007, July 2007, 366-378.

Oracle Semantics for Concurrent Separation Logic. Aquinas
Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. ESOP
2008, April 2008, 353—-367.

A Fresh Look at Separation Algebras and Share Accounting.
Robert Dockins, Aquinas Hobor, and Andrew W. Appel. APLAS
2009, December 2009, 161-177.

Mechanized Semantic Library

Coq library focused on developing semantic models for
interesting program logics

Current version: 0.3; we hope to get 0.4 out in the next few
months

Available at:htt p: // nsl . cs. pri ncet on. edu/

MSL use cases
Types in the polymorphia-calculus with references
Separation logic for imperative while programs

Concurrent C minor / Verified Software Toolchain
Extending C minor to concurrency; connecting machinefesti
source program verifications to certified targets.

Barriers in Concurrent Separation Logic
An extension of CSL to Pthreads-style barriers.

A Theory of Termination via Indirection
Total correctness with function pointers.

Heap-Hop
Separation logic verification tool, uses our extractedesnaodel

http://msl.cs.princeton.edu/

Relationship of paper to tutorial

¢ In addition to this tutorial, we have prepared a paper that is
included in the APLAS proceedings entitldd_ogical Mix of
Approximation and Separatiofipy Hobor, Dockins, and Appel)

e This tutorial is “example heavy”—the paper is “theory héavy

e Hopefully in this tutorial we can give you a good feel for haw t
develop our style of semantic models, and then you can use the
paper as a reference for the more technical aspects

e Both tutorial slides and paper are available on MSL website

Outline

@ Example 1: Types for the polymorphiccalculus with references

Example 1: Main take-away ideas

e Trusted Computing Base
e Semantics of approximation to model indirection

e End-to-end soundness proofs

The polymorphici-calculus

You are probably familiar with the polymorphiccalculus (System
F). Here is the flavor we will be using today:

e:=€y; €3 update

expressionse = n natural numbers
| f(e) primitives;f : N — e
| X variables; de Bruijn encoding in Coq
|/ addresses
| Axe functions; just\.ein Coq
| ae application
| new(e) allocation
| le dereference
|

We have added a few features (primitives, building the secgiéto
the update operation, etc.) to make writing example prograimpler.

One key omission may not be familiar. What is missing?

Curry vs. Church

The polymorphich-calculus is often presented with explicit type
abstraction and application, often usingande[r] respectively.

This is called &Church-stylecalculus: type operations appear in the
syntax and operational steps are required to evaluate pypeation.

(AT Ax:7.x) [int]3 — (Ax:intx)3 — 3

In contrast, we have @urry-stylecalculus: program syntax does not
contain types, and applying a polymorphic function to amuargnt
does not require an extra operational step.

(MxX)3 — 3

Curry vs. Church (2)

Why is this important?

Because real machines.§, x86) do not take operational steps to
evaluate types. We want our techniques to scale to the pdiaetemwve
can typecheck machine code. If we are only able to handle
Church-style calculi, then we will have to insert dummy iastions
(nop) into our machine code so that we can properly typecheck.

This leads to inferior performance—and is ugly. We need to be
confident that our technique can handle Curry-style calculi

Basic semantics for thie-calculus

We require several basic semantic ideas, largely unsingris
e Closed expressions: no free variables
e Values: naturals, addresse$, andclosed A-termsAx.e (in Coq,
use dependent types)

e Memoriesm: a pair(b, ¢) of abreak b(address used to track the
boundary of unallocated memory) and a funct{ofiom
addresses to values. Memories support the following opeasat

o deref(m, ¢): return the valu€ (¢)
e update(m, ¢, v): return the memoryb, [¢ — V|()
e new(m,Vv): return the paicb, (b+ 1, [b~— Vv|())

e Statess: pairs(m, e) of memory and expression

Basic semantics for th&-calculus (2)

A step relatiorr — o”:

e Small-step call-by-value untypedcalculus
e Using the memory operatiomneref, update, andnew to
evaluatée, e;:=ey; e3, andnew(e), respectively

Reflexive, transitive closure of sames*
A safety policy

e A statec can stepf there existss’ such that — o’

e A stateo is safeif for all reachables’—that is,c —* ¢'—0c’ has
reached a value or can step

e An expressioreis asafe programf, for any memorym, the state
(m, e) is safe

The goal of our type system will be to show that certain
expressions (i.e., those that are well-typed) are safe programs

Trusted Computing Base

Together, these semantic definitions make upltusted Computing
Base(TCB)—the definitions that need to be carefully examined to
make sure that we are proving the theorem that we intend.

Errors in the TCB (for example, a mistake in the operational
semantics of substitution; or an incorrect safety policy) mot be
caught by a proof checker, since the TCB aredbhgumptionsised in
the proof.

Especially when doing a complex mechanized proof, it is irtgr to
get the TCB as small and simple as possible. In the case of our
polymorphic-calculus with references, the TCB is 182 lines of Coq
(including whitespace and comments—126 without).

Types

What is a type and what kinds of types do we want to support?

e Atype, in the most general sense, is a way of classifying
expressions according to that kinds of values they produce.

e \We have only three kinds of values:

e naturals, for which we will want the typént
e addresses, for which we will want the typeef ~
e \-terms, for which we will want the function type — =

¢ In addition to those basic types, there are lots of otherkofd
types we may want as well:

e Quantified: universal and existential

e Logical: intersectiom), unionu, top T, bottom_L

e RecursiveyuF, for typing recursive structures such as lists

e Other goodies: Singletone(g, 3: {3}); Subseté.g, for
bounded quantification); Offset (for constructing recrds

Impredicativity and Equirecursion

What is one allowed to quantify over? If you want a type system
powerful enough to checle.g, the code emitted by an
industrial-strength ML compiler, then one needs the moxegutul
kind of quantification, known asnpredicative

That is, we want to write : Va. 7 wherea can have any
metatype—including, critically, thatx is allowed to range over all of
the types in our type system. (That is, in Cogyihas somenetatype

A, thenA : Type.) We need this feature to type check closures, which
are a quantified package of environment and code; criticiky
environment itself can contain closures (including, inc¢hse of
recursion through the store, for this function itself).

We also wanequirecursion full equality between:F andF (uF).

The alternativeisorecursion is to require operational steps to roll and
unroll the recursive types. If we want to check machine cdus,

would require extranop instructions.

Types as sets; the trouble with ref

e For a simpleX-calculus, the types are just sets of values; for
examplejnt = {0,1,-1,2, -2, ...}. Thenv: 7 just means
vVerT.

e Sets in mechanized provers are encoded as functions:

T whenv=n
int=Av. < | whenv="/
1 whenv= \x e

Thenv : 7 really means-(v) holds (in the metalogic)
e However, how can we define the typef ? We cannot say

T whenv =/
refr = v _
1 otherwise

since therref int is equal toref (ref int)

Memory typings

ldea: we add anemory typing—a function¢ from addresses to
types. Our typing judgment is nowt v : 7, with types as sets
of worlds—in this case, (memory typing,value) pairs:

pFEv:T = (p,v)ET aka. 7(¢,Vv)

Now we can try to defineef = as follows:

o(l) =71 whenv="/
1 otherwise

ref = (¢, V). {
This seems like a good idea, but we've created a terrible
contravariant cycle in our metatypes:

(memtype x value) — T
address — type

type
memtype

A standard cardinality argument shows that no solution i th
recursive definition exists in set theory.

Approximating the recursive equation

Although there is no exact solution, one might wonder ablogit t
existence of some “approximate” solution. Ten years agonédh
developed the first step-indexed model based on this idézoKt

20,000 lines of HOL to mechanize.

Time marches on. The naive attempt falls into the followpagtern:

F(X) = address — X
O = value
memtype ~ F((memtype x O) — T)

We developedndirection theoryto approximate any recursive
equation that falls into this pattern (assumkgs covariant). Now it
is possible to build the same (actually, a better) modelAlamed
developed in around 30 lines of Coq code. Just instanfiaedO in
a module (herd FP) meeting a simple interface, and use:

Modul e K : = Knot Prop(TFP) .

The knot

Indirection theory then builds a metatygeot (in Coq: K. knot) and
an associated series of operations and definitions:
e knots are approximatable—that is, there is an “approxifnate

relation between worlds, writtem ~ w/, and a “level” function
from worlds toN, written |w|, such that:
e level of bottom:(AW. w~~wW) = |w| =0
e level of approximationw ~~ w = |w| = |w|+1
e weak unapproximation3w. |w| = |W|+1) = 3Iw.w~>wW
e a metatypgredicate = (knot x value) — T; predicate will
be the metatype of types in oircalculus
e asection-retractiorpair between the knot and the type
N x (address — predicate)—that is, a pair of functions:
squash : (N x (address — predicate)) — knot
unsquash : knot — (N x (address — predicate))

such thasquash o unsquash is the identity function, and
unsquash o squash is a kind of approximation function

Approximating a predicate

What kind of approximation are we talking about? The key is an
approximation defined on predicates as follows:

approx,(P) : predicate = Xk {P(k) when|k| <n

1 otherwise

The idea is thaapprox, “forgets” how P behaves on knots of level

> n
(P when|k| =0 (P when|k| = 0
P; whenlk| =1 P1 whenlk| =1
approxz(q§ P2 whenlk| = 2) = ¢ k. L whenlk] =2
Ps when|k] =3 Ak. L whenlk| =3
\ *

This is just “slicing” P into disjoint partial functions by partitioning
its domain; theP; are just howP behaves on knots of level

unsquash o squash

So what isunsquash o squash? We approximate pointwise:
unsquash o squash(n,¢) = (n,approx,o ¢)
That is,

(70 when/ =0

71 when/ =1
unsquash o squash (n, M. <> whent/ = 2)
73 when/ =3

SR

(approx,(r9) when? =0
approx,(m1) whenl¢ =1

= (n, M. § approx,(m2) whent = 2)
approx,(m3) when?¢ =3

R

Relatingsquash/unsquash to ~/| - |

The operationsquash andunsquash are directly related to our
“approximatable” operations- and| - |:

e The level of a knot is just the first projection of its unsquagh
k| = fst(unsquash(k))

The level gives the amount of “information” (circularity,
recursion depth) in the knot.

e To go through the~ relation, unsquash and then resquash to the
next lower level:

ki ~» ko < let (n+1,¢) = unsquash(ky) in
ko = squash(n, ¢)

This relation does not hold whek| = 0. The effect is to “grind
down” the types contained in the knot.

e This seems counterproductive. Why would we want to lose
information?

Using a type pulled out of a knot

Suppose we have a knkt\We want to use it to discover what the type
associated with addregss; that is:

@ We unsquash k to get(n, ¢)
® We then lookupp(/) to get the type- associated witld.

Notice that (since to createin the first place we must have squashed
some initialg; to n) we have that = approx,(7).

Now that we have-, we want to use it—that is, to apply it to some
world (K',v). The obvious knot to apply it to isitself (that is, set
k' = k). But here we have a problem: for allwe have:

7(k,v) = approxy(r)(k,v) = L

That is,7 is unableto judge the knot whence it came.

Aging worlds; hereditariness

e The best we can do is apptyto a more approximate knot—that
is, if k ~ K/, thent (K, v) can say something meaningful.

e Each time we use the knot, we must approximate it further. We
handle arbitrarily-long execution traces by universal
guantification on the initial level di.

e We have a secondary problem.

e Lift our ~~ and| - | operations from knots to worlds:

|(k, V)| K
(k,v) ~ (K, V) KK Av=V

e Suppose we have(w) for somew, and we approximate to w’
(i.e, w ~~ w'). Need it be the case thatw')?
e Unfortunately the answer is no. Thiss not stable:

T = AW |w|>5

e We say that a predicate thddes have this property ieereditary
our soundness proofs contain numerous examples of prdvatg t
particular definitions€.g, for ref 7) are hereditary.

Semantic Types

We sayr, entailst, if the truth of 1 forces the truth of» in all
worlds.

mbkm = VYW W.wkEm—->wWED

Sometimes we need to compare two predicates (types) foligqua
However, full equality is too strong because it fails to beckigary.
Instead we use a notion approximate equality

T1T=nT2 = YW.|W<n— (WET<WkE™M)
Semantic Types (3)
Now we can already define some basic type constructors.
(¢,v) Enat =3dn.v=Nat n naturals
(9,v) Fjust V=v=V singleton type
(¢,v) =typeat L1 =9¢(l) =g T address typing
ref =3¢ just (Loc /) Atypeat £ 7 references
(P, V)T =Y. p~T ¢ — (¢, V) =7 approximately

(6, V)%T =V¢'. extends ¢ ¢’ — (¢',v) =7 extendedly
(p,v)orT =3¢’ . extends ¢ ¢’ A (¢',v) E7 dual of %

>, % and¢ are importantnodalitieswhich alter the meaning of a type.

e >7 meansr holds in allstrictly more approximate worlds

e %7 meansr holds inall worlds where additional reference types
have been added

e o7 means that holds insomeworld with extended reference
types

Godel-Lob Rule

Because of the way we set up our approximation structure ahisvo
> behaves in a very special way. It enjoys an induction rulkeeddhe
Godel-Lob rule.

PADQF Q
PFQ

Godel-Lob

Ther operator weakens a predicate in just the right way so that it i
appropriate as an induction hypothesis.

This induction rule is one of the key pieces of our final sategorem.
It is what allows the whole approximation approach to hamggtoer.

Typing Expressions (1)

Notice that we defined types as hereditary predicates ordsonlhich
contain values. However, we want to typepressionsnot just values.
This turns out to be necessary to define the function type ds we

Roughly, we want to say that an expressedmas typer if it evaluates
to a value having type.

First, we need to say when a memory satisfies a memory typing
Roughly, every allocated reference must satisfy (appratehg and in
all extended worlds) the type storeddn

(¢,v) E=validmemm = VL. (¢,m¥)) E %> (¢(£))

Typing Expressions (2)

Expression typing is captured by the following recursivérdeon.

expr typeer = %Vm.val i dnemm=
(Vm' €. (m,e) — (M, €) = >o(val i dnemm Aexpr _type € 7))
A
((m,e)|} =i sValueenw thval e(%r))

The definition breaks down into two mutually-exclusive case

@ The expression can take a step. In this case, we say thatwhe ne
memoryn? is validin some potentially extended memory type
and expressio# recursively has type.

® The expression cannot step. Then the expression must bae val
of the appropriate type.

In case 1, allowing the memory type to extend allows for theeca
where evaluating@ caused an allocation.

The Function Type

Now, with a definition for expression typing in hand, we cafirte
the critical arrow type constructor.

| amm, 7 = de.just (Lame) A
>%(Yv. wi t hval v (%) = (expr type (subst vem))

The first part of the definition simply asserts that the valustbe a
A abstraction. The second part is the meat: it says that (under
approximation) whenever a value of typgis substituted inte, the
resulting expression has typg

Semantic Typing Judgment

It is a simple matter to lift value typing tealue environmentsvhich
are just lists of values. A value environment is typed by a&typ
environment (a list of types).

(¢, EV:T = [V =[I[AVN(),Vn) = Tn

Herevis a list of values andl' is a list of typesv : I' holds when the
lists have the same length and corresponding elements istémel
typing relation.

Now we can define the semantic typing judgment.
F'Fe:7 = fve<|T|A(W. (V:T') Fexpr_type (subst Ve 1)

Thuse has typer underI" iff for all closing value environmentg of
typel’, subst V ehas typer. (NB: thel- on the RHS is predicate
entailment).

The safety theorem

Theorem (Program Safety)
For all e andr such that - e: 7, e is a safe program.

Note that the esult of the central theorem is the the safety policy
from the TCB.

Thepremise of our safety theorem is that an expressedmas typer
in an empty typing context, written— e : 7.

The safety theorem follows directly from the definition oéttyping
judgment and induction on the level of approximation.

Our typing rules

How do we prove that a given expressers well typed in some
contextl'?

In the usual way—by using typing rules. Actually, all of outes are
exactly standard. The difference is that we prove the ridéanamas
from our semantic definitions.

The end result is end-to-end: from a programve use typing rules to
give it a typer. Our typing rules are proved sound—thus, we know

that if our typing rules claim thatt- e: 7, it is actually the case
(semantically) thae is well-typed.

Finally, our safety theorem tells us that anything that eé(antically)
well-typed meets our safety policy.

Outline

©® Example 2: While programs with separation

Example 2: Main take-away ideas

e Separation algebras as semantics for separation logic
e The continuation-based hoare tuple

e Functionwise whole-program verification

The one-slide intro to separation logic

Separation logic (SL): a Floyd-Hoare logic where the agsert
language is (some extension of) the logic of Bunched Imfioa.

PxQ

P holds andQ holds and furthermore they referendisjoint
resources.

The “points-to” operator describes the contents of a caeth@mory:

{r—V

Inductive data in SL

SL is good at describing the shape of tree-structured data:

tree(/) = ¢f=null Vv

(L _x (l+1)— 1l x ({+2)— lyx
tree(l1) x tree(l))

X
x+1
X+2

y Data
y+1
y+2

Data

/.

.\

SN

z+1
z+2

Data

Separation Algebras

Separation algebras (SAs) are structures that capturedtioa rof

separable resources.

A SAis consists of a carrier sétand a partial operatiom which:

@ is commutativex by =y P X
@® is associativx @ (Y z) = (XPY) b z

® is cancellativei; By=X By — X1 = X

@ has unitsvx. Ix,. X, & X = X

@ is self-disjointxex =y —x=Yy

Wheneveix ¢ y = zwe say thak andy aredisjoint and thatx andy

join to makez

SL from SA

Given a SA (and an approximation structure)Awe can define the
operators of separation logic.

W = enp = WOW=W
W= px*(Q = Jwp Wo, (W1 D We =W)A
(W1 = p) A (W2 = Q)
WEP—q = YWiWWs, (W~*Wp)— (W W =Wsz) —

(W2 = p) — (w3 = 0)

Nutshell: Defining a separation algebra gives us an automaty to
define a well-behaved separation logic.

While programs, basics

I = N identifiers

a = N addresses
V == i+a values
T o= .. shares
p = 1=V local env

m = a— (7 xV) memory

While programs, syntax

e == {f:p—v|fismonotoné expressions

skip
C1; C
i = (€

= |€]
@] = e

commands

I f ethenciel sec

T
I
Q)

whil eedoc

fd == ix(ixv)xc

function declarations

(formals local decls command

p == iI—fd

programs

While programs, operational semantics summary

(k, p,m) = (K, pf, 1Y)

e(p) =i nt x X#0

k == Kkseqck
| kcall ipk
| knil

IfTrue

(kseq (i f ethenc;el se)k, p,m) —— (kseq ¢ &, p, M)

e(p) = adr a m@a) = (m,V)

Load

(kseq (i := [€]) k,p,m) == (K, p[i < V], m)

p(f) = (frms dcls, c)

&p) =V Call

(kseq (i := f(&)) x,p,m) —>
(kseqc (kcal | ipk),l ocal s(frmsV, dcls), m)

Worlds for the imperative language

Like with the \ -calculus, we define an assertion language as
predicates on “worlds.”

W=Nxpxm

A world is a tuple of a natural number, a local variable enwment
and memory.

The nat allows us to define the notion of approximation we reed
get the Godel-Lob operatar,

SA on memories

Two memories join if cells at every address join. Cells jditheir
shares add up and they have the same value. Empty cells jibiramy
cell. Think of shares as numbers between 0 and 1.

0| (0.5,i nt 10) 0| (0.5,i nt 10) 0| (1,int 10)
1| (1,adr 24) 1 1] (1,adr 24)
2 v 3 - 2

3| (0.5,int 7) 3] (0.25,i nt 7) 3| (0.75,int 7)

A nonzero share allows read access. Full share allows exelwsite
access.

SA on local variables

For locals we have two basic choices:

@ Treat local variables as resources, using separation togic
handle freshness.

® Treat locals as nonresources, using side conditions tddéand
freshness.

Option 2 is how traditional hoare logics handle freshnesis. d pretty
“syntactic” method.

We will take option 1 (variables-as-resources) for the sak®sovelty
and to explore the possibilities.

Thus, the SA on locals is basically like the SA on memories, bu
without shares.

Basic formulae

ars v Addressa has valuey, sharer

i — Vv locali has valuer

| — locali has some value

ellv expressiore evaluates tw

anyl ocal s Accepts any, requires emptyn
lift P P holds in allp andm

a+— vandi — Vv aretight specifications, indicating that all other
cells/locals are empty.

e |l vis nottight and holds in environments larger than required to
evaluatee.

Thel i ft predicate takes a predicate on worldfsand turns it into a
predicate orN.

n=liftP = Vom (np,m) =P

The semantic hoare triple (1)

We reduce the hoare tuple pértial correctness into the more
primitive notion of program safety.

A program statér, p, m) is safein programp for n steps provided:
for all m < nand tupleg«’, p/, '), where(x, p, m) steps to

(', p/, M) in exactlymstepseither ' = kni | or (', p’,m) can
take another step.

(n,p,m) =safenpk

Thesaf en predicate expresses that the siateo, m) is safe inp for
n steps.

The semantic hoare triple (2)

A predicateguardsa continuation if the predicate makes safe to
run. That isP is a precondition for executing,.

guardspPx = lift (P=safenpk)

We'll also need a more technical definition for “return gusatd

rguards pRFk =
Ve.guards p((3v.e VARV xF) (kseq (ret e))

HereR: val — pred W andF : pr ed W. Basically,R represents
the postcondition that must be true on function return tarobistack
K.

The semantic hoare triple (3)

hoarepRPcQ =
Vk F.
rguards pRFk =
guardsp (Q«F) x =
guards p (PxF) (kseqck)

HereR: val — pred W andP,Q: pred W.

This continuation-passing definition simplified is “wheaethe
postconditions make the continuatiersafe, the preconditions make
runningc before entering: safe.

Note, the first order frame rule is baked directly into thermaén.

Hoare Rules, summary

hoarepRPcQ
hoarep (Av. RvxF) (PxF)c(QxF)

HFrame

Hload

hoarep R
(Jawv. (el adr a) A
(@S V) * (i)x (@ vxi— v — Q)
(i = [¢])
Q

hoarepR(3v. (e V) ARV) (ret e) Q Hiret

satisfiesfunspecpffs

hoarepR
(IVa (B V)Apregavs(i— _) x
(Vv. postavs (i — Vv) — Q))
(i := (&)
Q

Hcall

Program Verification (1)

We verify functions against thegpecificationswhich specify the
function pre- and post-conditions.

For each functiorf in the program we choosefanction specification
fs with components: typéys, a pre-condition

pregx : Ais — V— pred W and a post-condition

pOSt s : Ais — V— pred W.

The typeAss captures what information is shared between the pre and
post. The verifier at the call site chooses an appropAate

Technical restriction: the pre and post require an emptsl leariable
environment.

Program Verification (2)

Main ldea: to verify a program, firgissume that every function
approximatelysatisfies its specification, and thgmow that every
functionactually satisfies its specification.

Intuition: approximate facts hold after we take at least moee step
of computation. Calling a function consumes a step, so the
approximate assumption suffices to reason about call sites.

The approximate assumption allows us to verify functioh sigds
without begging the question. The Godel-L6b rule tieskhet by
induction on the approximation index.

Program Verification (3)

ps:=f —~fs Program Specifications

satisfiesfunspecpffs=
Ifd. p(f) =1d A
Va: As. >hoarep (Av.postiavsanyl ocals)
(V. preiavxfunc_l ocal s fd V)

Cid
1

sati sfies_spec pps=
Vi fs. (pgf) =fs) = sati sfi esfunspecpffs

Program Verification (4)

val i datepspps=
>satisfiesspecppst satisfiesspecpps

Theval | dat e predicate captures a state of partial verification. We
have assumed all gfs but only provedos, which will typically be a
subset ops.

When verification is complet@s = ps. The Godel-Ldb rule then
shows that the program satisfies its spec.
Theorem (Program Safety)

Wheneveral i dat e ps p ps holds, It is safe to call any function
mentioned in ps in any environment satisfying the statedomition.

Verification Rules/Lemmas

Trivial base case to get verification started:

VEmMpty

val i dat e ps p(Af. 1)

Interesting case: verify a single function body, add it ® $let of
verified functions.

p(i) =fd
val i dat e ps p p$
sati sfies_spec ppst Va: As.
hoarep (Av.postiavskanyl ocal s)
(V. preggav«func_l ocal s fd V)

Ctd
- VSing|
val i dat e ps p(ps - f — fg) ngle
Outline

@ Example 3: Concurrent Cminor

CCm intro

Cminor is a C-like language that forms one of the high-letafjss of
the CompCert verified compiler. It supports a quite largesstibf the
functionality of C.

ConcurrentCminor is an extension of Cminor with support for
threads-and-locks style concurrency.

Proving the soundness of the program logic for this langusgather
complicated and forms the original motivation for most & thork in
this tutorial.

For our purposes today, CCm is interesting because it regjbioth
predicates-in-the-heap and separation logic.

Mixing separation and approximation (1)

To get separation and approximation in the same logic, wd are
approximation structure and a separation algebra on the satrof
worlds.

We also need to restrict their interaction so they “play ‘htogether.,
We need the join relation and the age relation to commute.4The
diagrams below show the axioms we need; the elements in tteddo
boxes are asserted to exist.

1 2 3 1 2 3
I====y=====5== 1 1=y ======5y==== 1
Eorod ¢ ¢ ¢ g
;) !) _ ;) ! by) _ vy
wli@ w,= w, iwl b w,= 1w,
I============" 1 I===========-=- 1
1 —_— 1 —

w, :@ w, = w3i W, © w, —iwg

1 1
LN U S N S AU S
’) ’ ’ ’ ’
w, & w,= w, w, & w,= w,

Mixing separation and approximation (2)

Fortunately, the required axioms are not too difficult tovero

In return, they are used to show the definitions of the seipar&igic
operators from the last section are hereditary, and theyaasused to
prove nice equations involving both approximation and ssjn.

>(PxQ) = »>Px*x>Q
>(P— Q) = P —x>Q

Locks and Invariants

Locking protocols are handled in the logic of CCm using aues®
transfer analogy. A lock controls some resources (e.g.aeedidata
structure). When a thread acquires a lock, it obtains th&alted
resources. It relinquishes the resources when releasiigdh.

Acquire lock = get resources
Release lock = relinquish resources

Each lock has asource invarianivhich describes the controlled
resources.

Lock rules (simplified)

Lock

hoare (¢~ 1) (I ock £) (£~ 1 x| xhol d ¢)

p- — Unlock
hoare (¢ ~ | x| xhol d ¢) (unl ock ¢) (¢ ~ 1)

precicel
hoar e (6»1>0) (makel ock 1) (63» | xhol d ?)

Makelock

The speciahol d resource represents the ability to unlock a lock.
This ensures lock acquire/release is well-bracketed.

Precisepredicates are those which identify a unique subset of adworl
This technical restriction is necessary to make the sowssresult
work out.

Predicates in the heap, again

To give semantics to the lock predicdte~ |, we need to store the
invariantl in the memory.

| is an arbitrary (precise) formula in separation logic, sowed to
store predicates in the memory, which get judged by preglcat

We again use indirection theory to approximate the desioedain
for building our worlds.

Too many details!

Unfortunately, CCm is much too large to go into much detad talk
of this length. Some salient points:

Memory is both an approximation and a separable structure.

The hoare tuple is defined in a similar continuation-passigtg
as before.

The logic of CCm enforces a data-race-free discipline, bat ¢
still allow shared reads using share accounting.

Considerably more complicated, but the same techniques fro
the simple examples still apply!

See Aquinas Hobor’s thesis for all the gritty details.

Summary

What we hope you take away:

Semantic methods for PL theory have a different flavor than
syntactic/subject-reduction and is a useful tool to casrsid

Approximation is a useful tool for dealing with semantic
modeling problems where one wishes to associate invariants
with addressable storage.

Separation logic is a powerful reasoning tool for languagitis
addressable storage.

The MSL is a Coq proof library which can help you build
machine-verified proofs for program logics.

Outline

@® Supplemental Information

While programs, operational semantics (1)

k = Kkseqck
(k, M) = (K, /) | keallipx
| knil
Skip

(kseq (ski p) &, p, M) —= (k, p, M)

Seq
(kseq <C1) CZ) K, P, m) i) (kseq C1 (kseq C2 K>7p7 m)

e(p) =1int x X#0

(kseq (i f ethencyel sec)k,p,m) LN (kseq ¢y k, p,m)

IfTrue

e(p)=int 0

5 IfFalse
(kseq (i f ethencyel secy) k,p,m — (kseq ¢z k, p,m)

While programs, operational semantics (2)

e(p) =v p(i) defined

5 Assign
(kseq (i := €) k,p,m) — (k, p[i < V|, m)
e(p) =adr a m(a) = (m,V) Load
(kseq (i == [€]) #,p,m) = (K, pli — V], m)
ei(p) = o) =v ma=01)
(kseq ([ex] = 92) Ky M) 5 (k, p, M@ — (1,V)])

e(p) =int x X#0

_ 5 WhileTrue
(kseq (whi l eedoc) x,p,m) —
(kseq c (kseq (whi |l eedoc) k), p, m)
ep)=intO
(v) WhileFalse

(kseq (whi | e edo ¢) &, p,m) —— (x, p, M)

While programs, operational semantics (3)

p(f) = (frms dclsc) &p) =V

(kseq (i := f(&)) x,p,m) —>
(kseqc (kcal | ipk),l ocal s(frmsV,dcls), m)

Call

e(p) =v unwind(x) = (i,p',x')

(kseq (ret €) k, p,m) = (/,

Ret

ol v, m)

unwi nd(kseq ck)
unwi nd(kcal | ipk)

unwi nd(x)

(i, p,)

Hoare Rules (1)

hoarepRPcQ

hoarep (Av. Rv«F) (PxF)c(QxF) HFrame
P=P Q=Q (W.Rv=RVv)
hoarepRPcQ
HConsequence

hoarep RP cQ

hoarep R P, ¢ Py hoarep RP ¢y P3

Hse
hoare pR P, (ci;¢) P \

hoare pRQski pQ Hskip

Hoare Rules (2)

Hassign

hoarepR
(Av.ef VA (i —) * (i —Vv— Q))
(i = e
Q

Hstore
hoarepR

(Fav. (e badr @) A (e hV) A (@)* (@ v — Q)
gel] = &)

hoarepR
(Jamv. (el adr a) A
<a|1>V)>I<(iI—>_)>I<(al1>V*iI—>V—>!< Q))
(i == [¢])
Q

Hoare Rules (3)

hoarepR(3n. (ellint nNfAn#0AP)c Q

hoarepR(elint OAP)c Q Hif
|

hoarepR(3dn. (ellint nN)AP) (if ethenciel secy) Q

hoarepR(dn. (ellint N An#0Al)c(dn. (el int n)Al) Hwhile

hoarepR(3dn. (elint n)Al)(whileedoc)(ellint OAI)

Hoare Rules (4)

hoarepR(3av. (e V) ARV) (ret) Q Hiret

satisfiesfunspecpffs

Hcall
hoarepR

(IVa (BYyV)Apregavs(i—) x
(V. postigavs (i — V) — Q))

(i = 1(8)

Q

	Introduction and Background
	Goals
	Semantic Methods for Program Logics
	Approximation and Separation
	Mechanized Semantic Library

	Example 1: Types for the polymorphic -calculus with references
	Example 2: While programs with separation
	Example 3: Concurrent Cminor
	Summary
	Supplemental Information

