
Developing and Mechanizing Semantic Models
for Program Logics

Aquinas Hobor1 Robert Dockins2

1National University of Singapore

2Princeton University

Nov. 28, 2010 / APLAS 2010

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

Major Goals for this Tutorial

• Review two program logics:
1 Types in the polymorphicλ-calculus
2 Separation logic

• Discuss a program logic that combines features from both:
3 concurrent separation logic with first-class locks

• As we go we show how to develop semantic models for these
logics. We demonstrate the first two as self-contained examples;
we give the third as an outline of a more complicated system.

• We are particularly interested in mechanization in Coq

Why use semantic methods?

• Two approaches to proving soundness: Semantic and Syntactic

• In the last 20 years, syntactic methods (Wright-Felleisen,e.g.,
induction on typing judgments) have been more popular

• We prefer semantic methods—developing models of our
program logics and proving the logics sound w.r.t. the model

• 10 years ago, syntactic methods had major advantages for people
who wanted desirable program logic features like impredicative
quantification. However, the state of the art has advanced—good
semantic solutions are now available and ready for deployment.

Why use semantic methods?

• There is some evidence that semantic methods work better for
larger projects,e.g.with better modularity and scaling
[BDH+08].

• Semantic methods can be easier in mechanized settings;e.g.,
most mechanized Hoare logics have semantic-style assertions,
even when the soundness proofs are done syntactically.

• For high-reliability applications, the trusted computingbase can
be smaller since semantic methods require theorem checkers
whereas syntactic methods requiremetatheorem checkers

• Still, at the end, it is still a matter of taste—if you have nottried
semantic methods then why not give them a try!

Why useour semantic methods?

• We (and others at Princeton) have been focused on developing
and mechanizing semantic methods for 10 years.

• Our techniques are available as a (BSD-licensed) library, so they
can be rapidly applied to a new project. We have released several
examples that can be modified for this purpose.

• Good “proof engineering”—techniques that help mechanization.

• It is relatively easy to develop toy languages and models that
completely break when you want to make them more realistic.
The techniques we have developed will scale to fully-realistic
settings.

• We continue to improve the library; you will be able to take
advantage without having to mechanize those techniques
yourself.

Approximation and Separation

Approximation is a term we use to mean a certain collection of
mathematical tools which solve knotty problems arising when one
needs to associate invariants with memory locations. The classic
example isλ calculus with references; the invariants are the types of
the reference cells.

Separation refers to a fairly recent idea of explicitly reasoning about
disjoint or nonoverlapping resources in a program logic. Its primary
use is to cleanly handle the issue of pointer nonaliasing in languages
with addressable memory. It is especially useful for describing and
reasoning about inductive (tree-structured) data structures.

Citations for Approximation

• Semantics of Types for Mutable State. Amal J. Ahmed.
Princeton University PhD thesis TR-713-04, 2004.

• A Very Modal Model of a Modern, Major, General Type System.
Andrew W. Appel, Paul-Andre Melliès, Christopher D. Richards,
and Jerôme Vouillon. POPL 2007, January 2007, 109–122.

• A Theory of Indirection via Approximation. Aquinas Hobor,
Robert Dockins, and Andrew W. Appel. POPL 2010, Jan 2010,
171–185.

A promising alternate approach based on metric spaces (willnot be
discussed in this talk):

• The category-theoretic solution of recursive metric-space
equations. L. Birkedal, K. Støvring, and J. Thamsborg.
Theoretical Computer Science, 411:4102-4122, 2010.

• Step-indexed kripke models over recursive worlds. 2010. L.
Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J.
Thamsborg, and H. Yang. To appear, POPL 2011.

Citations for Separation

• Separation Logic: A Logic for Shared Mutable Data Structures.
John Reynolds. LICS 2002, July 2002, 55–74.

• Resources, Concurrency and Local Reasoning. Peter W.
O’Hearn. TCS vol. 375, May 2007, 271–307.

• Permission Accounting in Separation Logic. Richard Bornat,
Cristiano Calcagno, Peter W. O’Hearn, and Matthew Parkinson.
POPL 2005, January 2005, 259–270.

• Local Action and Abstract Separation Logic. C. Calcagno, P.W.
O’Hearn, and H. Yang. LICS 2007, July 2007, 366-378.

• Oracle Semantics for Concurrent Separation Logic. Aquinas
Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. ESOP
2008, April 2008, 353–367.

• A Fresh Look at Separation Algebras and Share Accounting.
Robert Dockins, Aquinas Hobor, and Andrew W. Appel. APLAS
2009, December 2009, 161–177.

Mechanized Semantic Library

• Coq library focused on developing semantic models for
interesting program logics

• Current version: 0.3; we hope to get 0.4 out in the next few
months

• Available at:http://msl.cs.princeton.edu/

MSL use cases

• Types in the polymorphicλ-calculus with references

• Separation logic for imperative while programs

• Concurrent C minor / Verified Software Toolchain
Extending C minor to concurrency; connecting machine-verified
source program verifications to certified targets.

• Barriers in Concurrent Separation Logic
An extension of CSL to Pthreads-style barriers.

• A Theory of Termination via Indirection
Total correctness with function pointers.

• Heap-Hop
Separation logic verification tool, uses our extracted share model

http://msl.cs.princeton.edu/

Relationship of paper to tutorial

• In addition to this tutorial, we have prepared a paper that is
included in the APLAS proceedings entitledA Logical Mix of
Approximation and Separation(by Hobor, Dockins, and Appel)

• This tutorial is “example heavy”—the paper is “theory heavy”

• Hopefully in this tutorial we can give you a good feel for how to
develop our style of semantic models, and then you can use the
paper as a reference for the more technical aspects

• Both tutorial slides and paper are available on MSL website

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

Example 1: Main take-away ideas

• Trusted Computing Base

• Semantics of approximation to model indirection

• End-to-end soundness proofs

The polymorphicλ-calculus

You are probably familiar with the polymorphicλ-calculus (System
F). Here is the flavor we will be using today:

expressionse = n natural numbers
| f (e) primitives; f : N→ e
| x variables; de Bruijn encoding in Coq
| ℓ addresses
| λx.e functions; justλ.e in Coq
| e1 e2 application
| new(e) allocation
| !e dereference
| e1:=e2; e3 update

We have added a few features (primitives, building the sequence into
the update operation, etc.) to make writing example programs simpler.

One key omission may not be familiar. What is missing?

Curry vs. Church

The polymorphicλ-calculus is often presented with explicit type
abstraction and application, often usingΛ ande[τ] respectively.

This is called aChurch-stylecalculus: type operations appear in the
syntax and operational steps are required to evaluate type application.

(Λτ.λx : τ.x) [int] 3 7→ (λx : int.x) 3 7→ 3

In contrast, we have aCurry-stylecalculus: program syntax does not
contain types, and applying a polymorphic function to an argument
does not require an extra operational step.

(λx.x) 3 7→ 3

Curry vs. Church (2)

Why is this important?

Because real machines (e.g., x86) do not take operational steps to
evaluate types. We want our techniques to scale to the point where we
can typecheck machine code. If we are only able to handle
Church-style calculi, then we will have to insert dummy instructions
(nop) into our machine code so that we can properly typecheck.

This leads to inferior performance—and is ugly. We need to be
confident that our technique can handle Curry-style calculi.

Basic semantics for theλ-calculus

We require several basic semantic ideas, largely unsurprising:

• Closed expressions: no free variables

• Values: naturalsn, addressesℓ, andclosed λ-termsλx.e (in Coq,
use dependent types)

• Memoriesm: a pair(b, ζ) of abreak b(address used to track the
boundary of unallocated memory) and a functionζ from
addresses to values. Memories support the following operations:

• deref(m, ℓ): return the valueζ(ℓ)
• update(m, ℓ, v): return the memory(b, [ℓ 7→ v]ζ)
• new(m, v): return the pair(b, (b + 1, [b 7→ v]ζ))

• Statesσ: pairs(m, e) of memory and expression

Basic semantics for theλ-calculus (2)

• A step relationσ 7→ σ′:
• Small-step call-by-value untypedλ-calculus
• Using the memory operationsderef, update, andnew to

evaluate!e, e1:=e2; e3, andnew(e), respectively

• Reflexive, transitive closure of same:7→∗

• A safety policy:
• A stateσ can stepif there existsσ′ such thatσ 7→ σ′

• A stateσ is safeif for all reachableσ′—that is,σ 7→∗ σ′—σ′ has
reached a value or can step

• An expressione is asafe programif, for any memorym, the state
(m, e) is safe

• The goal of our type system will be to show that certain
expressions (i.e., those that are well-typed) are safe programs

Trusted Computing Base

Together, these semantic definitions make up theTrusted Computing
Base(TCB)—the definitions that need to be carefully examined to
make sure that we are proving the theorem that we intend.

Errors in the TCB (for example, a mistake in the operational
semantics of substitution; or an incorrect safety policy) will not be
caught by a proof checker, since the TCB are theassumptionsused in
the proof.

Especially when doing a complex mechanized proof, it is important to
get the TCB as small and simple as possible. In the case of our
polymorphicλ-calculus with references, the TCB is 182 lines of Coq
(including whitespace and comments—126 without).

Types

What is a type and what kinds of types do we want to support?

• A type, in the most general sense, is a way of classifying
expressions according to that kinds of values they produce.

• We have only three kinds of values:
• naturalsn, for which we will want the typeint
• addressesℓ, for which we will want the typeref τ
• λ-terms, for which we will want the function typeτ1→ τ2

• In addition to those basic types, there are lots of other kinds of
types we may want as well:

• Quantified: universal∀ and existential∃
• Logical: intersection∩, union∪, top⊤, bottom⊥
• Recursive:µF, for typing recursive structures such as lists
• Other goodies: Singleton: (e.g., 3 : {3}); Subset (e.g., for

bounded quantification); Offset (for constructing records); . . .

Impredicativity and Equirecursion

What is one allowed to quantify over? If you want a type system
powerful enough to check,e.g., the code emitted by an
industrial-strength ML compiler, then one needs the more powerful
kind of quantification, known asimpredicative.

That is, we want to writee : ∀α. τ whereα can have any
metatype—including, critically, thatα is allowed to range over all of
the types in our type system. (That is, in Coq, ifα has somemetatype
A, thenA : Type.) We need this feature to type check closures, which
are a quantified package of environment and code; critically, the
environment itself can contain closures (including, in thecase of
recursion through the store, for this function itself).

We also wantequirecursion: full equality betweenµF andF(µF).
The alternative,isorecursion, is to require operational steps to roll and
unroll the recursive types. If we want to check machine code,this
would require extranop instructions.

Types as sets; the trouble with ref

• For a simpleλ-calculus, the types are just sets of values; for
example,int ≡ {0, 1,−1, 2,−2, . . .}. Thenv : τ just means
v ∈ τ .

• Sets in mechanized provers are encoded as functions:

int ≡ λv.

⊤ whenv = n

⊥ whenv = ℓ

⊥ whenv = λx. e

Thenv : τ really meansτ(v) holds (in the metalogic)

• However, how can we define the typeref τ? We cannot say

ref τ ≡ λv.

{

⊤ whenv = ℓ

⊥ otherwise

since thenref int is equal toref (ref int)

Memory typings

• Idea: we add amemory typing—a functionφ from addresses to
types. Our typing judgment is nowφ ⊢ v : τ , with types as sets
of worlds—in this case, (memory typing,value) pairs:

φ ⊢ v : τ ≡ (φ, v) ∈ τ a.k.a. τ(φ, v)

• Now we can try to defineref τ as follows:

ref τ ≡ λ(φ, v).

{

φ(ℓ) = τ whenv = ℓ

⊥ otherwise

• This seems like a good idea, but we’ve created a terrible
contravariant cycle in our metatypes:

type ≡ (memtype× value)→ T

memtype ≡ address ⇀ type

A standard cardinality argument shows that no solution to this
recursive definition exists in set theory.

Approximating the recursive equation

Although there is no exact solution, one might wonder about the
existence of some “approximate” solution. Ten years ago, Ahmed
developed the first step-indexed model based on this idea. Ittook
20,000 lines of HOL to mechanize.

Time marches on. The naı̈ve attempt falls into the followingpattern:

F(X) ≡ address ⇀ X
O ≡ value
memtype ≈ F((memtype×O)→ T)

We developedindirection theoryto approximate any recursive
equation that falls into this pattern (assumingF is covariant). Now it
is possible to build the same (actually, a better) model thatAhmed
developed in around 30 lines of Coq code. Just instantiateF andO in
a module (hereTFP) meeting a simple interface, and use:

Module K := KnotProp(TFP).

The knot

Indirection theory then builds a metatypeknot (in Coq:K.knot) and
an associated series of operations and definitions:
• knots are approximatable—that is, there is an “approximate”

relation between worlds, writtenw w′, and a “level” function
from worlds toN, written |w|, such that:

• level of bottom:(6 ∃w′. w w′) ⇒ |w| = 0
• level of approximation:w w′ ⇒ |w| = |w′|+ 1
• weak unapproximation:(∃w. |w| = |w′|+ 1) ⇒ ∃w. w w′

• a metatypepredicate ≡ (knot× value)→ T; predicate will
be the metatype of types in ourλ-calculus

• asection-retractionpair between the knot and the type
N× (address ⇀ predicate)—that is, a pair of functions:

• squash :
(

N× (address ⇀ predicate)
)

→ knot
• unsquash : knot →

(

N× (address ⇀ predicate)
)

• such thatsquash ◦ unsquash is the identity function, and
• unsquash ◦ squash is a kind of approximation function

Approximating a predicate

What kind of approximation are we talking about? The key is an
approximation defined on predicates as follows:

approxn(P) : predicate ≡ λk.

{

P(k) when|k| < n

⊥ otherwise

The idea is thatapproxn “forgets” howP behaves on knots of level
≥ n:

approx2

(

P0 when|k| = 0

P1 when|k| = 1

P2 when|k| = 2

P3 when|k| = 3

.

)

=

P0 when|k| = 0

P1 when|k| = 1

λk. ⊥ when|k| = 2

λk. ⊥ when|k| = 3

.

This is just “slicing”P into disjoint partial functions by partitioning
its domain; thePi are just howP behaves on knots of leveli.

unsquash ◦ squash

So what isunsquash ◦ squash? We approximate pointwise:

unsquash ◦ squash(n, φ) = (n, approxn ◦ φ)

That is,

unsquash ◦ squash
(

n, λℓ.

τ0 whenℓ = 0

τ1 whenℓ = 1

τ2 whenℓ = 2

τ3 whenℓ = 3

.

)

=
(

n, λℓ.

approxn(τ0) whenℓ = 0

approxn(τ1) whenℓ = 1

approxn(τ2) whenℓ = 2

approxn(τ3) whenℓ = 3

.

)

Relatingsquash/unsquash to /| · |

The operationssquash andunsquash are directly related to our
“approximatable” operations and| · |:

• The level of a knot is just the first projection of its unsquashing:

|k| = fst(unsquash(k))

The level gives the amount of “information” (circularity,
recursion depth) in the knot.

• To go through the relation, unsquash and then resquash to the
next lower level:

k1 k2 ↔ let (n + 1, φ) = unsquash(k1) in
k2 = squash(n, φ)

This relation does not hold when|k| = 0. The effect is to “grind
down” the types contained in the knot.

• This seems counterproductive. Why would we want to lose
information?

Using a type pulled out of a knot

Suppose we have a knotk. We want to use it to discover what the type
associated with addressℓ is; that is:

1 Weunsquash k to get(n, φ)

2 We then lookupφ(ℓ) to get the typeτ associated withℓ.

Notice that (since to createk in the first place we must have squashed
some initialφi to n) we have thatτ = approxn(τ).

Now that we haveτ , we want to use it—that is, to apply it to some
world (k′, v). The obvious knot to apply it to isk itself (that is, set
k′ = k). But here we have a problem: for allv, we have:

τ(k, v) = approx|k|(τ)(k, v) = ⊥

That is,τ is unable to judge the knot whence it came.

Aging worlds; hereditariness

• The best we can do is applyτ to a more approximate knot—that
is, if k k′, thenτ(k′, v) can say something meaningful.

• Each time we use the knot, we must approximate it further. We
handle arbitrarily-long execution traces by universal
quantification on the initial level ofk.

• We have a secondary problem.
• Lift our and| · | operations from knots to worlds:

|(k, v)| ≡ |k|
(k, v) (k′, v′) ≡ k k′ ∧ v = v′

• Suppose we haveτ(w) for somew, and we approximatew to w′

(i.e., w w′). Need it be the case thatτ(w′)?
• Unfortunately the answer is no. Thisτ is not stable:

τ ≡ λw. |w| > 5

• We say that a predicate thatdoes have this property ishereditary;
our soundness proofs contain numerous examples of proving that
particular definitions (e.g., for ref τ) are hereditary.

Semantic Types

We sayτ1 entailsτ2 if the truth ofτ1 forces the truth ofτ2 in all
worlds.

τ1 ⊢ τ2 ≡ ∀w : W. w |= τ1→ w |= τ2

Sometimes we need to compare two predicates (types) for equality.
However, full equality is too strong because it fails to be hereditary.
Instead we use a notion ofapproximate equality.

τ1 =n τ2 ≡ ∀w. |w| < n→ (w |= τ1↔ w |= τ2)

Semantic Types (3)

Now we can already define some basic type constructors.
(φ, v) |= nat ≡ ∃n. v = Nat n naturals
(φ, v) |= just v′ ≡ v = v′ singleton type
(φ, v) |= typeat ℓ τ ≡ φ(ℓ) =|φ| τ address typing
ref τ ≡ ∃ℓ. just (Loc ℓ) ∧ typeat ℓ τ references

(φ, v) ⊲ τ ≡ ∀φ′. φ + φ′ → (φ′, v) |= τ approximately
(φ, v)%τ ≡ ∀φ′. extends φ φ′ → (φ′, v) |= τ extendedly
(φ, v) ⋄ τ ≡ ∃φ′. extends φ φ′ ∧ (φ′, v) |= τ dual of%

⊲, % and⋄ are importantmodalitieswhich alter the meaning of a type.

• ⊲τ meansτ holds in allstrictly more approximate worlds

• %τ meansτ holds inall worlds where additional reference types
have been added

• ⋄τ means thatτ holds insomeworld with extended reference
types

Gödel-Löb Rule

Because of the way we set up our approximation structure on worlds
⊲ behaves in a very special way. It enjoys an induction rule called the
Gödel-Löb rule.

P∧ ⊲Q ⊢ Q
P ⊢ Q

Gödel-L̈ob

The⊲ operator weakens a predicate in just the right way so that it is
appropriate as an induction hypothesis.

This induction rule is one of the key pieces of our final safetytheorem.
It is what allows the whole approximation approach to hang together.

Typing Expressions (1)

Notice that we defined types as hereditary predicates on worlds, which
contain values. However, we want to typeexpressions, not just values.
This turns out to be necessary to define the function type as well.

Roughly, we want to say that an expressionehas typeτ if it evaluates
to a value having typeτ .

First, we need to say when a memory satisfies a memory typingφ.
Roughly, every allocated reference must satisfy (approximately and in
all extended worlds) the type stored inφ.

(φ, v) |= validmemm ≡ ∀ℓ. (φ, m(ℓ)) |= % ⊲ (φ(ℓ))

Typing Expressions (2)

Expression typing is captured by the following recursive definition.

expr type e τ ≡ %∀m. validmemm⇒
(∀m′ e′. (m, e) −→ (m′, e′)⇒ ⊲ ⋄ (validmem m′ ∧ expr type e′ τ))
∧
((m, e)⇓ ⇒ isValue e∧ withval e (%τ))

The definition breaks down into two mutually-exclusive cases.

1 The expression can take a step. In this case, we say that the new
memorym′ is valid in some potentially extended memory type
and expressione′ recursively has typeτ .

2 The expression cannot step. Then the expression must be a value
of the appropriate type.

In case 1, allowing the memory type to extend allows for the case
where evaluatingecaused an allocation.

The Function Type

Now, with a definition for expression typing in hand, we can define
the critical arrow type constructor.

lam τ1 τ2 ≡ ∃e. just (Lam e) ∧
⊲%(∀v. withval v (%τ1)⇒ (expr type (subst v e)τ2))

The first part of the definition simply asserts that the value must be a
λ abstraction. The second part is the meat: it says that (under
approximation) whenever a value of typeτ1 is substituted intoe, the
resulting expression has typeτ2.

Semantic Typing Judgment

It is a simple matter to lift value typing tovalue environments, which
are just lists of values. A value environment is typed by a type
environment (a list of types).

(φ,) |= ~v : Γ ≡ |~v| = |Γ| ∧ ∀n.(φ, vn) |= Γn

Here~v is a list of values andΓ is a list of types.~v : Γ holds when the
lists have the same length and corresponding elements standin the
typing relation.

Now we can define the semantic typing judgment.

Γ ⊢ e : τ ≡ fv e≤ |Γ|∧(∀~v. (~v : Γ) ⊢ expr type (subst~v e) τ)

Thusehas typeτ underΓ iff for all closing value environments~v of
typeΓ, subst~v ehas typeτ . (NB: the⊢ on the RHS is predicate
entailment).

The safety theorem

Theorem (Program Safety)
For all e andτ such that· ⊢ e : τ , e is a safe program.

Note that theresult of the central theorem is the the safety policy
from the TCB.

Thepremise of our safety theorem is that an expressionehas typeτ
in an empty typing context, written· ⊢ e : τ .

The safety theorem follows directly from the definition of the typing
judgment and induction on the level of approximation.

Our typing rules

How do we prove that a given expressione is well typed in some
contextΓ?

In the usual way–by using typing rules. Actually, all of our rules are
exactly standard. The difference is that we prove the rules as lemmas
from our semantic definitions.

The end result is end-to-end: from a programe, we use typing rules to
give it a typeτ . Our typing rules are proved sound—thus, we know
that if our typing rules claim that· ⊢ e : τ , it is actually the case
(semantically) thate is well-typed.

Finally, our safety theorem tells us that anything that is (semantically)
well-typed meets our safety policy.

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

Example 2: Main take-away ideas

• Separation algebras as semantics for separation logic

• The continuation-based hoare tuple

• Functionwise whole-program verification

The one-slide intro to separation logic

Separation logic (SL): a Floyd-Hoare logic where the assertion
language is (some extension of) the logic of Bunched Implications.

P ∗Q

P holds andQ holds and furthermore they referencedisjoint
resources.

The “points-to” operator describes the contents of a cell inmemory:

ℓ 7→ v

Inductive data in SL

SL is good at describing the shape of tree-structured data:

tree(ℓ) ≡ ℓ = null ∨
(ℓ 7→ ∗ (ℓ + 1) 7→ ℓ1 ∗ (ℓ + 2) 7→ ℓ2 ∗
tree(ℓ1) ∗ tree(ℓ2))

Data

Data

x

x+1

x+2

y

y+1

y+2

z

z+1

z+2

Data

Separation Algebras

Separation algebras (SAs) are structures that capture the notion of
separable resources.
A SA is consists of a carrier setA and a partial operation⊕ which:

1 is commutativex⊕ y = y⊕ x

2 is associativex⊕ (y⊕ z) = (x⊕ y)⊕ z

3 is cancellativex1⊕ y = x2⊕ y→ x1 = x2

4 has units∀x. ∃xu. xu⊕ x = x

5 is self-disjointx⊕ x = y→ x = y

Wheneverx⊕ y = zwe say thatx andy aredisjoint and thatx andy
join to makez.

SL from SA

Given a SA (and an approximation structure) onA, we can define the
operators of separation logic.

w |= emp ≡ w⊕ w = w

w |= p ∗ q ≡ ∃w1 w2, (w1⊕ w2 = w)∧
(w1 |= p) ∧ (w2 |= q)

w |= p−−∗ q ≡ ∀w1 w2 w3, (w ∗ w1)→ (w1⊕ w2 = w3)→
(w2 |= p)→ (w3 |= q)

Nutshell: Defining a separation algebra gives us an automatic way to
define a well-behaved separation logic.

While programs, basics

i ::= N identifiers
a ::= N addresses
v ::= i + a values
π ::= · · · shares

ρ ::= i ⇀ v local env

m ::= a ⇀ (π × v) memory

While programs, syntax

e ::= {f : ρ ⇀ v | f is monotone} expressions

c ::= skip commands
| c1 ; c2

| i := f (~e)
| ret e
| i := e
| i := [e]
| [e1] := e2

| if ethen c1 else c2

| while edo c

fd ::= ~i ×
−−−−→
(i × v)× c function declarations

(formals, local decls, command)
p ::= i ⇀ fd programs

While programs, operational semantics summary

(κ, ρ, m)
p
−→ (κ′, ρ′, m′)

κ ::= kseq c κ

| kcall i ρ κ

| knil

e(ρ) = int x x 6= 0

(kseq (if ethen c1 else c2) κ, ρ, m)
p
−→ (kseq c1 κ, ρ, m)

IfTrue

e(ρ) = adr a m(a) = (π, v)

(kseq (i := [e]) κ, ρ, m)
p
−→ (κ, ρ[i ← v], m)

Load

p(f) = (frms, dcls, c) ~e(ρ) = ~v

(kseq (i := f (~e)) κ, ρ, m)
p
−→

(kseq c (kcall i ρ κ),locals(frms,~v, dcls), m)

Call

Worlds for the imperative language

Like with theλ -calculus, we define an assertion language as
predicates on “worlds.”

W ≡ N× ρ×m

A world is a tuple of a natural number, a local variable environment
and memory.

The nat allows us to define the notion of approximation we needto
get the Gödel-Löb operator,⊲.

SA on memories

Two memories join if cells at every address join. Cells join if their
shares add up and they have the same value. Empty cells join with any
cell. Think of shares as numbers between 0 and 1.

0 (0.5,int 10)
1 (1,adr 24)
2
3 (0.5,int 7)

⊕

0 (0.5,int 10)
1
2
3 (0.25,int 7)

=

0 (1,int 10)
1 (1,adr 24)
2
3 (0.75,int 7)

A nonzero share allows read access. Full share allows exclusive write
access.

SA on local variables

For locals we have two basic choices:

1 Treat local variables as resources, using separation logicto
handle freshness.

2 Treat locals as nonresources, using side conditions to handle
freshness.

Option 2 is how traditional hoare logics handle freshness. It is a pretty
“syntactic” method.

We will take option 1 (variables-as-resources) for the sakeof novelty
and to explore the possibilities.

Thus, the SA on locals is basically like the SA on memories, but
without shares.

Basic formulae

a
π
7→ v Addressa has valuev, shareπ

i 7→ v local i has valuev
i 7→ local i has some value
e⇓ v expressioneevaluates tov
anylocals Accepts anyρ, requires emptym
lift P Pholds in allρ andm

a
π
7→ v andi 7→ v aretight specifications, indicating that all other

cells/locals are empty.

e⇓ v is not tight and holds in environments larger than required to
evaluatee.

Thelift predicate takes a predicate on worldsW and turns it into a
predicate onN.

n |= lift P ≡ ∀ρ m. (n, ρ, m) |= P

The semantic hoare triple (1)

We reduce the hoare tuple ofpartial correctness into the more
primitive notion of program safety.

A program state(κ, ρ, m) is safein programp for n steps provided:
for all m≤ n and tuples(κ′, ρ′, m′), where(κ, ρ, m) steps to
(κ′, ρ′, m′) in exactlymstepseither κ′ = knil or (κ′, ρ′, m′) can
take another step.

(n, ρ, m) |= safen p κ

Thesafen predicate expresses that the state(κ, ρ, m) is safe inp for
n steps.

The semantic hoare triple (2)

A predicateguardsa continuationκ if the predicate makesκ safe to
run. That is,P is a precondition for executingκ.

guards p Pκ ≡ lift (P⇒ safen p κ)

We’ll also need a more technical definition for “return guards:”

rguards p R Fκ ≡
∀e. guards p ((∃v. e⇓ v∧ R v) ∗ F) (kseq (ret e) κ)

HereR : val→ pred W andF : pred W. Basically,R represents
the postcondition that must be true on function return to control stack
κ.

The semantic hoare triple (3)

hoare p R P c Q ≡
∀κ F.

rguards p R Fκ⇒
guards p (Q ∗ F) κ⇒
guards p (P ∗ F) (kseq c κ)

HereR : val→ pred W andP, Q : pred W.

This continuation-passing definition simplified is “whenever the
postconditions make the continuationκ safe, the preconditions make
runningc before enteringκ safe.

Note, the first order frame rule is baked directly into the definition.

Hoare Rules, summary
hoare p R P c Q

hoare p (λv. R v∗ F) (P ∗ F) c (Q ∗ F)
HFrame

hoare p R
(∃a π v. (e⇓ adr a) ∧

(a
π
7→ v) ∗ (i 7→) ∗ (a

π
7→ v ∗ i 7→ v−−∗ Q))

(i := [e])
Q

Hload

hoare p R(∃v. (e⇓ v) ∧ R v) (ret e) Q
Hret

satisfies fun spec p f fs

hoare p R
(∃~v a. (~e⇓ ~v) ∧ prefs a~v ∗ (i 7→) ∗

(∀v. postfs a v∗ (i 7→ v) −−∗ Q))
(i := f (~e))
Q

Hcall

Program Verification (1)

We verify functions against theirspecifications, which specify the
function pre- and post-conditions.

For each functionf in the program we choose afunction specification
fs with components: typeAfs, a pre-condition
prefs : Afs→ ~v→ pred W and a post-condition
postfs : Afs→ v→ pred W.

The typeAfs captures what information is shared between the pre and
post. The verifier at the call site chooses an appropriateAfs.

Technical restriction: the pre and post require an empty local variable
environment.

Program Verification (2)

Main Idea: to verify a program, firstassume that every function
approximatelysatisfies its specification, and thenshow that every
functionactuallysatisfies its specification.

Intuition: approximate facts hold after we take at least onemore step
of computation. Calling a function consumes a step, so the
approximate assumption suffices to reason about call sites.

The approximate assumption allows us to verify function call sites
without begging the question. The Gödel-Löb rule ties theknot by
induction on the approximation index.

Program Verification (3)

ps ::= f ⇀ fs Program Specifications

satisfies fun spec p f fs≡
∃fd. p(f) = fd ∧
∀a : Afs. ⊲ hoare p (λv. postfs a v∗ anylocals)

(∃~v. prefs a~v ∗ func locals fd~v)
cfd

⊥

satisfies spec p ps≡
∀f fs. (ps(f) = fs)⇒ satisfies fun spec p f fs

Program Verification (4)

validate ps p ps′ ≡
⊲satisfies spec p ps ⊢ satisfies spec p ps′

Thevalidate predicate captures a state of partial verification. We
have assumed all ofpsbut only provedps′, which will typically be a
subset ofps.

When verification is complete,ps= ps′. The Gödel-Löb rule then
shows that the program satisfies its spec.

Theorem (Program Safety)
Whenevervalidate ps p ps holds, It is safe to call any function
mentioned in ps in any environment satisfying the stated precondition.

Verification Rules/Lemmas

Trivial base case to get verification started:

validate ps p(λf . ⊥)
VEmpty

Interesting case: verify a single function body, add it to the set of
verified functions.

p(i) = fd
validate ps p ps′

satisfies spec p ps⊢ ∀a : Afs.

hoare p (λv. postfs a v∗ anylocals)
(∃~v. prefs a~v ∗ func locals fd~v)
cfd

⊥

validate ps p(ps′ · f 7→ fs)
VSingle

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

CCm intro

Cminor is a C-like language that forms one of the high-level stages of
the CompCert verified compiler. It supports a quite large subset of the
functionality of C.

ConcurrentCminor is an extension of Cminor with support for
threads-and-locks style concurrency.

Proving the soundness of the program logic for this languageis rather
complicated and forms the original motivation for most of the work in
this tutorial.

For our purposes today, CCm is interesting because it requires both
predicates-in-the-heap and separation logic.

Mixing separation and approximation (1)

To get separation and approximation in the same logic, we need an
approximation structure and a separation algebra on the same set of
worlds.

We also need to restrict their interaction so they “play nice” together.
We need the join relation and the age relation to commute. The4
diagrams below show the axioms we need; the elements in the dotted
boxes are asserted to exist.

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

Mixing separation and approximation (2)

Fortunately, the required axioms are not too difficult to prove.

In return, they are used to show the definitions of the separation logic
operators from the last section are hereditary, and they also are used to
prove nice equations involving both approximation and separation.

⊲(P ∗Q) = ⊲P ∗ ⊲Q

⊲(P−−∗ Q) = ⊲P−−∗ ⊲Q

Locks and Invariants

Locking protocols are handled in the logic of CCm using a resource
transfer analogy. A lock controls some resources (e.g., a shared data
structure). When a thread acquires a lock, it obtains the controlled
resources. It relinquishes the resources when releasing the lock.

Acquire lock = get resources
Release lock = relinquish resources

Each lock has aresource invariantwhich describes the controlled
resources.

Lock rules (simplified)

hoare (ℓ
π
 I) (lock ℓ) (ℓ

π
 I ∗ I ∗ hold ℓ)

Lock

hoare (ℓ
π
 I ∗ I ∗ hold ℓ) (unlock ℓ) (ℓ

π
 I)

Unlock

precice I

hoare (ℓ
1
7→ 0) (makelock ℓ I) (ℓ

1
 I ∗ hold ℓ)

Makelock

The specialhold resource represents the ability to unlock a lock.
This ensures lock acquire/release is well-bracketed.

Precisepredicates are those which identify a unique subset of a world.
This technical restriction is necessary to make the soundness result
work out.

Predicates in the heap, again

To give semantics to the lock predicateℓ I , we need to store the
invariantI in the memory.

I is an arbitrary (precise) formula in separation logic, so weneed to
store predicates in the memory, which get judged by predicates...

We again use indirection theory to approximate the desired domain
for building our worlds.

Too many details!

Unfortunately, CCm is much too large to go into much detail ina talk
of this length. Some salient points:

• Memory is both an approximation and a separable structure.

• The hoare tuple is defined in a similar continuation-passingstyle
as before.

• The logic of CCm enforces a data-race-free discipline, but can
still allow shared reads using share accounting.

• Considerably more complicated, but the same techniques from
the simple examples still apply!

See Aquinas Hobor’s thesis for all the gritty details.

Summary

What we hope you take away:

• Semantic methods for PL theory have a different flavor than
syntactic/subject-reduction and is a useful tool to consider.

• Approximation is a useful tool for dealing with semantic
modeling problems where one wishes to associate invariants
with addressable storage.

• Separation logic is a powerful reasoning tool for languageswith
addressable storage.

• The MSL is a Coq proof library which can help you build
machine-verified proofs for program logics.

Outline

1 Introduction and Background
Goals
Semantic Methods for Program Logics
Approximation and Separation
Mechanized Semantic Library

2 Example 1: Types for the polymorphicλ-calculus with references

3 Example 2: While programs with separation

4 Example 3: Concurrent Cminor

5 Supplemental Information

While programs, operational semantics (1)

(κ, ρ, m)
p
−→ (κ′, ρ′, m′)

κ ::= kseq c κ

| kcall i ρ κ

| knil

(kseq (skip) κ, ρ, m)
p
−→ (κ, ρ, m)

Skip

(kseq (c1 ; c2) κ, ρ, m)
p
−→ (kseq c1 (kseq c2 κ), ρ, m)

Seq

e(ρ) = int x x 6= 0

(kseq (if ethen c1 else c2) κ, ρ, m)
p
−→ (kseq c1 κ, ρ, m)

IfTrue

e(ρ) = int 0

(kseq (if ethen c1 else c2) κ, ρ, m)
p
−→ (kseq c2 κ, ρ, m)

IfFalse

While programs, operational semantics (2)

e(ρ) = v ρ(i) defined

(kseq (i := e) κ, ρ, m)
p
−→ (κ, ρ[i ← v], m)

Assign

e(ρ) = adr a m(a) = (π, v)

(kseq (i := [e]) κ, ρ, m)
p
−→ (κ, ρ[i ← v], m)

Load

e1(ρ) = adr a e2(ρ) = v m(a) = (1,)

(kseq ([e1] := e2) κ, ρ, m)
p
−→ (κ, ρ, m[a← (1, v)])

Store

e(ρ) = int x x 6= 0

(kseq (while edo c) κ, ρ, m)
p
−→

(kseq c (kseq (while edo c) κ), ρ, m)

WhileTrue

e(ρ) = int 0

(kseq (while edo c) κ, ρ, m)
p
−→ (κ, ρ, m)

WhileFalse

While programs, operational semantics (3)

p(f) = (frms, dcls, c) ~e(ρ) = ~v

(kseq (i := f (~e)) κ, ρ, m)
p
−→

(kseq c (kcall i ρ κ),locals(frms,~v, dcls), m)

Call

e(ρ) = v unwind(κ) = (i, ρ′, κ′)

(kseq (ret e) κ, ρ, m)
p
−→ (κ′, ρ′[i ← v], m)

Ret

unwind(kseq c κ) = unwind(κ)
unwind(kcall i ρ κ) = (i, ρ, κ)

Hoare Rules (1)

hoare p R P c Q
hoare p (λv. R v∗ F) (P ∗ F) c (Q ∗ F)

HFrame

P′ ⇒ P Q⇒ Q′ (∀v. R v⇒ R′ v)
hoare p R P c Q

hoare p R′ P′ c Q′ HConsequence

hoare p R P1 c1 P2 hoare p R P2 c2 P3

hoare p R P1 (c1; c2) P3
Hseq

hoare p R Qskip Q
Hskip

Hoare Rules (2)

hoare p R
(∃v. e⇓ v∧ (i 7→) ∗ (i 7→ v−−∗ Q))
(i := e)
Q

Hassign

hoare p R

(∃a v. (e1 ⇓ adr a) ∧ (e2 ⇓ v) ∧ (a
1
7→) ∗ (a

1
7→ v−−∗ Q))

([e1] := e2)
Q

Hstore

hoare p R
(∃a π v. (e⇓ adr a) ∧

(a
π
7→ v) ∗ (i 7→) ∗ (a

π
7→ v ∗ i 7→ v−−∗ Q))

(i := [e])
Q

Hload

Hoare Rules (3)

hoare p R(∃n. (e⇓ int n) ∧ n 6= 0∧ P) c1 Q
hoare p R(e⇓ int 0∧ P) c2 Q

hoare p R(∃n. (e⇓ int n) ∧ P) (if ethen c1 else c2) Q
Hif

hoare p R(∃n. (e⇓ int n) ∧ n 6= 0∧ I) c (∃n. (e⇓ int n) ∧ I)

hoare p R(∃n. (e⇓ int n) ∧ I) (while edo c) (e⇓ int 0∧ I)
Hwhile

Hoare Rules (4)

hoare p R(∃v. (e⇓ v) ∧ R v) (ret e) Q
Hret

satisfies fun spec p f fs

hoare p R
(∃~v a. (~e⇓ ~v) ∧ prefs a~v ∗ (i 7→) ∗

(∀v. postfs a v∗ (i 7→ v) −−∗ Q))
(i := f (~e))
Q

Hcall

	Introduction and Background
	Goals
	Semantic Methods for Program Logics
	Approximation and Separation
	Mechanized Semantic Library

	Example 1: Types for the polymorphic -calculus with references
	Example 2: While programs with separation
	Example 3: Concurrent Cminor
	Summary
	Supplemental Information

