
Excerpt: Table of Contents
and �rst three chapters

PROGRAM LOGICS FOR CERTIFIED COMPILERS

Separation logic is the twenty-first-century variant of Hoare logic that
permits verification of pointer-manipulating programs. This book covers
practical and theoretical aspects of separation logic at a level accessible
to beginning graduate students interested in software verification. On
the practical side it offers an introduction to verification in Hoare and
separation logics, simple case studies for toy languages, and the Verifiable
C program logic for the C programming language. On the theoretical
side it presents separation algebras as models of separation logics; step-
indexed models of higher-order logical features for higher-order programs;
indirection theory for constructing step-indexed separation algebras; tree-
shares as models for shared ownership; and the semantic construction (and
soundness proof) of Verifiable C. In addition, the book covers several aspects
of the CompCert verified C compiler, and its connection to foundationally
verified software analysis tools. All constructions and proofs are made
rigorous and accessible in the Coq developments of the open-source
Verified Software Toolchain.

Andrew W. Appel is the Eugene Higgins Professor and Chairman of the
Department of Computer Science at Princeton University, where he has
been on the faculty since 1986. His research is in software verification,
computer security, programming languages and compilers, automated
theorem proving, and technology policy. He is known for his work on
Standard ML of New Jersey and on Foundational Proof-Carrying Code. He
is a Fellow of the Association for Computing Machinery, recipient of the
ACM SIGPLAN Distinguished Service Award, and has served as Editor-in-
Chief of ACM Transactions on Programming Languages and Systems. His
previous books include Compiling with Continuations (1992), the Modern
Compiler Implementation series (1998 and 2002), and Alan Turing’s Systems
of Logic (2012).

PROGRAM LOGICS FOR
CERTIFIED COMPILERS

ANDREW W. APPEL
Princeton University, Princeton, New Jersey

ROBERT DOCKINS
Portland State University, Portland, Oregon

AQUINAS HOBOR
National University of Singapore and Yale/NUS College, Singapore

LENNART BERINGER
Princeton University, Princeton, New Jersey

JOSIAH DODDS
Princeton University, Princeton, New Jersey

GORDON STEWART
Princeton University, Princeton, New Jersey

SANDRINE BLAZY
Université de Rennes 1

XAVIER LEROY
INRIA Paris-Rocquencourt

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107048010

c⃝ Andrew W. Appel 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

ISBN 978-1-107-04801-0 Hardback

Cambridge University Press has no responsibility for the persistence
or accuracy of URLs for external or third-party Internet Web sites referred

to in this publication and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.

This book is typeset in the Bitstream Charter font.
Font Copyright c⃝1989–1992, Bitstream Inc., Cambridge, MA.

www.cambridge.org
www.cambridge.org/9781107048010

in memory of

Kenneth I. Appel
1932–2013

a pioneer in computer proof

Contents

Road map ix
Acknowledgments x
1 Introduction 1

I Generic separation logic 9
2 Hoare logic 10
3 Separation logic 16
4 Soundness of Hoare logic 25
5 Mechanized Semantic Library 33
6 Separation algebras 35
7 Operators on separation algebras 44
8 First-order separation logic 49
9 A little case study 55
10 Covariant recursive predicates 63
11 Share accounting 69

II Higher order separation logic 75
12 Separation logic as a logic 76
13 From separation algebras to separation logic 84
14 Simplification by rewriting 89
15 Introduction to step-indexing 94
16 Predicate implication and subtyping 99
17 General recursive predicates 104
18 Case study: Separation logic with first-class functions 111

viii

19 Data structures in indirection theory 123
20 Applying higher-order separation logic 130
21 Lifted separation logics 134

III Separation logic for CompCert 141
22 Verifiable C 142
23 Expressions, values, and assertions 148
24 The VST separation logic for C light 153
25 Typechecking for Verifiable C 173
26 Derived rules and proof automation for C light 184
27 Proof of a program 195
28 More C programs 208
29 Dependently typed C programs 217
30 Concurrent separation logic 222

IV Operational semantics of CompCert 232
31 CompCert 233
32 The CompCert memory model 237
33 How to specify a compiler 272
34 C light operational semantics 288

V Higher-order semantic models 294
35 Indirection theory 295
36 Case study: Lambda-calculus with references 316
37 Higher-order Hoare logic 340
38 Higher-order separation logic 347
39 Semantic models of predicates-in-the-heap 351

VI Semantic model and soundness of Verifiable C 362
40 Separation algebra for CompCert 363
41 Share models 374
42 Juicy memories 385
43 Modeling the Hoare judgment 392
44 Semantic model of CSL 401

ix

45 Modular structure of the development 406

VII Applications 410
46 Foundational static analysis 411
47 Heap theorem prover 426

Bibliography 442

Index 452

Road map

Readers interested in the theory of separation logic (with some
example applications) should read Chapters 1–21. Readers interested in
the use of separation logic to verify C programs should read Chapters 1–6
and 8–30. Those interested in the theory of step-indexing and indirection
theory should read Chapters 35–39. Those interested in building models
of program logics proved sound for certified compilers should read
Chapters 40–47, though it would be helpful to read Chapters 1–39 as a
warm-up.

Acknowledgments

I thank Jean-Jacques Lévy for hosting my visit to INRIA Rocquencourt
2005–06, during which time I started thinking about the research described
in this book. I enjoyed research collaborations during that time with
Francesco Zappa Nardelli, Sandrine Blazy, Paul-André Melliès, and Jérôme
Vouillon.

I thank the scientific team that built and maintains the Coq proof
assistant, and I thank INRIA and the research funding establishment of
France for supporting the development of Coq over more than two decades.

Mario Alvarez and Margo Flynn provided useful feedback on the
usability of VST 0.9.

Research funding for some of the scientific results described in this
book was provided by the Air Force Office of Scientific Research (agree-
ment FA9550-09-1-0138), the National Science Foundation (grant CNS-
0910448), and the Defense Advanced Research Projects Agency (agreement
FA8750-12-2-0293). The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of AFOSR,
NSF, DARPA, or the U.S. government.

Chapter 1

Introduction

An exciting development of the 21st century is that the 20th-century vision
of mechanized program verification is finally becoming practical, thanks
to 30 years of advances in logic, programming-language theory, proof-
assistant software, decision procedures for theorem proving, and even
Moore’s law which gives us everyday computers powerful enough to run all
this software.

We can write functional programs in ML-like languages and prove them
correct in expressive higher-order logics; and we can write imperative
programs in C-like languages and prove them correct in appropriately
chosen program logics. We can even prove the correctness of the verification
toolchain itself: the compiler, the program logic, automatic static analyzers,
concurrency primitives (and their interaction with the compiler). There
will be few places for bugs (or security vulnerabilities) to hide.

This book explains how to construct powerful and expressive program
logics based on separation logic and Indirection Theory. It is accompanied
by an open-source machine-checked formal model and soundness proof, the
Verified Software Toolchain1 (VST), formalized in the Coq proof assistant.
The VST components include the theory of separation logic for reasoning
about pointer-manipulating programs; indirection theory for reasoning
with “step-indexing” about first-class function pointers, recursive types,

1http://vst.cs.princeton.edu

http://vst.cs.princeton.edu

1. INTRODUCTION 2

recursive functions, dynamic mutual-exclusion locks, and other higher-
order programming; a Hoare logic (separation logic) with full reasoning
about control-flow and data-flow of the C programming language; theories
of concurrency for reasoning about programming models such as Pthreads;
theories of compiler correctness for connecting to the CompCert verified C
compiler; theories of symbolic execution for implementing foundationally
verified static analyses. VST is built in a modular way, so that major
components apply very generally to many kinds of separation logics, Hoare
logics, and step-indexing semantics.

One of the major demonstration applications comprises certified pro-
gram logics and certified static analyses for the C light programming
language. C light is compiled into assembly language by the CompCert2

certified optimizing compiler. [62] Thus, the VST is useful for verified for-
mal reasoning about programs that will be compiled by a verified compiler.
But Parts I, II, and V of this book show principles and Coq developments
that are quite independent of CompCert and have already been useful in
other applications of separation logics.

PROGRAM LOGICS FOR CERTIFIED COMPILERS. Software is complex and prone
to bugs. We would like to reason about the correctness of programs,
and even to prove that the behavior of a program adheres to a formal
specification. For this we use program logics: rules for reasoning about
the behavior of programs. But programs are large and the reasoning rules
are complex; what if there is a bug in our proof (in our application of the
rules of the program logic)? And how do we know that the program logic
itself is sound—that when we conclude something using these rules, the
program will really behave as we concluded? And once we have reasoned
about a program, we compile it to machine code; what if there is a bug in
the compiler?

We achieve soundness by formally verifying our program logics, static
analyzers, and compilers. We prove soundness theorems based on foun-
dational specifications of the underlying hardware. We check all proofs by
machine, and connect the proofs together end-to-end so there are no gaps.

2http://compcert.inria.fr

http://compcert.inria.fr

1. INTRODUCTION 3

DEFINITIONS. A program consists of instructions written in a programming
language that direct a computer to perform a task. The behavior of a
program, i.e. what happens when it executes, is specified by the operational
semantics of the programming language. Some programming languages
are machine languages that can directly execute on a computer; others
are source languages that require translation by a compiler before they can
execute.

A program logic is a set of formal rules for static reasoning about the
behavior of a program; the word static implies that we do not actually
execute the program in such reasoning. Hoare logic is an early and still very
important program logic. Separation logic is a 21st-century variant of Hoare
logic that better accounts for pointer and array data structures.

A compiler is correct with respect to the specification of the operational
semantics of its source and its target languages if, whenever a source
program has a particular defined behavior, and when the compiler translates
that program, then the target program has a corresponding behavior. [38]
The correspondence is part of the correctness specification of the compiler,
along with the two operational semantics. A compiler is proved correct if
there is a formal proof that it meets this specification. Since the compiler
is itself a program, this formal proof will typically be using the rules of a
program logic for the implementation language of the compiler.

Proofs in a logic (or program logic) can be written as derivation trees in
which each node is the application of a rule of the system. The validity of a
proof can be checked using a computer program. A machine-checked proof
is one that has been checked in this way. Proof-checking programs can be
quite small and simple, [12] so one can reasonably hope to implement a
proof-checker free of bugs.

It is inconvenient to construct derivation trees “by hand.” A proof
assistant is a tool that combines a proof checker with a user interface that
assists the human in building proofs. The proof assistant may also contain
algorithms for proof automation, such as tactics and decision procedures.

A certified compiler is one proved correct with a machine-checked proof.
A certified program logic is one proved sound with a machine-checked proof.
A certified program is one proved correct (using a program logic) with a
machine-checked proof.

1. INTRODUCTION 4

A static analysis algorithm calculates properties of the behavior of a
program without actually running it. A static analysis is sound if, whenever
it claims some property of a program, that property holds on all possible
behaviors (in the operational semantics). The proof of soundness can be
done using a (sound) program logic, or it can be done directly with respect
to the operational semantics of the programming language. A certified static
analysis is one that is proved sound with a machine-checked proof—either
the static analysis program is proved correct, or each run of the static
analysis generates a machine-checkable proof about a particular instance.

In Part I we will review Hoare logics, operational semantics, and
separation logics. For a more comprehensive introduction to Hoare
logic, the reader can consult Huth and Ryan [54] or many other books;
For operational semantics, see Harper [47, Parts I & II] or Pierce [75].
For an introduction to theorem-proving in Coq, see Pierce’s Software
Foundations[76] which also covers applications to operational semantics
and Hoare logic.

THE VST SEPARATION LOGIC FOR C LIGHT is a higher-order impredicative
concurrent separation logic certified with respect to CompCert. Separation
logic means that its assertions specify heap-domain footprints: the assertion
(p x) ∗ (q y) describes a memory with exactly two disjoint parts; one
part has only the cell at address p with contents x , and the other has
only address q with contents y , with p ̸= q. Concurrent separation logic
is an extension that can describe shared-memory concurrent programs
with Dijkstra-Hoare synchronization (e.g., Pthreads). Higher-order means
that assertions can use existential and universal quantifiers, the logic can
describe pointers to functions and mutex locks, and recursive assertions can
describe recursive data types such as lists and trees. Impredicative means
that the ∃ and ∀ quantifiers can even range over assertions containing
quantifiers. Certified means that there is a machine-checked proof of
soundness with respect to the operational semantics of a source language
of the CompCert C compiler.

A separation logic has assertions p x where p ranges over a particular
address type A, x ranges over a specific type V of values, and the assertion
as a whole can be thought of as a predicate over some specific type of

1. INTRODUCTION 5

“heaps” or “computer memories” M . Then the logic will have theorems
such as (p x) ∗ (q y) ⊢ (q y) ∗ (p x).

We will write down generic separation logic as a theory parameterizable
by types such as A, V, M , and containing generic axioms such as P∗Q ⊢Q∗P.
For a particular instantiation such as CompCert C light, we will instantiate
the generic logic with the types of C values and C expressions.

Chapter 3 will give an example of an informal program verification
in “pencil-and-paper” separation logic. Then Part V shows the VST tools
applied to build a foundationally sound toolchain for a toy language, with
a machine-verified separation-logic proof of a similar program. Part III
demonstrates the VST tools applied to the C language, connected to the
CompCert compiler, and shows machine-checked verification C programs.

Shares

 C light
syntax

 C light expression
 semantics

Generic axioms of
separation logic &
indirection theory

Specification of Hoare Client View axioms for C light

Local/global var.
environments

Assertion operators of
VST separation logic

Values

C light program logic,
Chapter 24

Assertions, Ch. 23

Shares, Ch. 11

Separation logic
with indirection,
Ch. 8,11,12,15–21

Figure 1.1: Client view of VST separation logic

FIGURE 1.1 SHOWS THE client view of the VST separation logic for C light—
that is, the specification of the axiomatic semantics. Users of the program
logic will reason directly about CompCert values (integers, floats, pointers)
and C-light expression evaluation. Users do not see the operational
semantics of C-light commands, or CompCert memories. Instead, they use

1. INTRODUCTION 6

the axiomatic semantics—the Hoare judgment and its reasoning rules—to
reason indirectly about memories via assertions such as p x .

The modular structure of the client view starts (at bottom left of Fig. 1.1)
with the specification of the C light language, a subset of C chosen for its
compatibility with program-verification methods. We have C values (such
as integers, floats, and pointers); the abstract syntax of C light, and
the mechanism of evaluating C light expressions. The client view treats
statements such as assignment and looping abstractly via an axiomatic
semantics (Hoare logic), so it does not expose an operational semantics.

At bottom right of Figure 1.1 we have the operators and axioms of
separation logic and of indirection theory. At center are the assertions of
our program logic for C light, which (as the diagram shows) make use of
C-light expressions and of our logical operators. At top, the Hoare axioms
for C light complete the specification of the program logic.

Readers primarily interested in using the VST tools may want to read
Parts I through III, which explain the components of the client view.

THE SOUNDNESS PROOF OF THE VST SEPARATION LOGIC is constructed by
reasoning in the model of separation logic. Figure 1.2 shows the structure
of the soundness proof. At bottom left is the specification of C-light
operational semantics. We have a generic theory of safety and simulation
for shared-memory programs, and we instantiate that into the “C light
safety” theory.

At bottom right (Fig. 1.2) is the theory of separation algebras, which form
models of separation logics. The assertions of our logic are predicates on the
resource maps that, in turn, model CompCert memories. The word predicate
is a technical feature of our Indirection Theory that implicitly accounts
for “resource approximation,” thus allowing higher-order reasoning about
circular structures of pointers and resource invariants.

We construct a semantic model of the Hoare judgment, and use this
to prove sound all the judgment rules of the separation logic. All this is
encapsulated in a Coq module called SeparationLogicSoundness.

Parts IV through VI explain the components of Figure 1.2, the semantic
model and soundness proof of higher-order impredicative separation logic
for CompCert C light.

1. INTRODUCTION 7

Soundness
proof:
Chapter 43

Model of Hoare
judgment:
Chapter 43

Safety:
Chapter 33

C light:
Chapter 34

CompCert:
Chapter 31

Generic theory of
separation algebras

Indirection
theory

Shares

 C light
syntax &

expression
semantics

 C light
command
semantics

Generic operators
of separation logic

ValuesMemories

Model of Hoare
judgment (semax)

Specification of Hoare
axioms for C light

(SeparationLogic)

Certified separation logic for C light
(SeparationLogicSoundness)

Soundness proofs
of Hoare axioms

Environments
Generic theory
of safety and

simulation (environ)
Resource maps
(rmap) sep. alg.

Model of assertions in
VST separation logic

Ageable sep. algs.

C light safety

Soundness
Proof

Figure 1.2: Structure of the separation-logic soundness proof

The Coq development of the Verified Software Toolchain is available at
vst.cs.princeton.edu and is structured in a root directory with several
subdirectories:

compcert: A few files copied from the CompCert verified C compiler, that
comprise the specification of the C light programming language.

vst.cs.princeton.edu

1. INTRODUCTION 8

sepcomp: Theory of how to specify shared-memory interactions of
CompCert-compiled programs.

msl: Mechanized Software Library, the theory of separation algebras, share
accounting, and generic separation logics.

veric: The program logic: a higher-order splittable-shares concurrent
separation logic for C light.

floyd: A proof-automation system of lemmas and tactics for semiautomated
application of the program logic to C programs (named after Robert
W. Floyd, a pioneer in program verification).

progs: Applications of the program logic to sample programs.

veristar: A heap theorem prover using resolution and paramodulation.

A proof development, like any software, is a living thing: it is continually
being evolved, edited, maintained, and extended. We will not tightly couple
this book to the development; we will just explain the key mathematical
and organizational principles, illustrated with snapshots from the Coq code.

9

Part I

Generic separation logic

SYNOPSIS: Separation logic is a formal system for static reasoning about
pointer-manipulating programs. Like Hoare logic, it uses assertions that
serve as preconditions and postconditions of commands and functions. Unlike
Hoare logic, its assertions model anti-aliasing via the disjointness of memory
heaplets. Separation algebras serve as models of separation logic. We can
define a calculus of different kinds of separation algebras, and operators
on separation algebras. Permission shares allow reasoning about shared
ownership of memory and other resources. In a first-order separation logic
we can have predicates to describe the contents of memory, anti-aliasing of
pointers, and simple (covariant) forms of recursive predicates. A simple case
study of straight-line programs serves to illustrate the application of separation
logic.

10

Chapter 2

Hoare logic

Hoare logic is an axiomatic system for reasoning about program behavior
in a programming language. Its judgments have the form {P} c {Q}, called
Hoare triples.1 The command c is a statement of the programming language.
The precondition P and postcondition Q are assertions characterizing the
state before and after executing c.

In a Hoare logic of total correctess, {P} c {Q} means, “starting from any
state on which the assertion P holds, execution of the command c will
safely terminate in a state on which the assertion Q holds.”

In a Hoare logic of partial correctness, {P} c {Q} means, “starting from
any state on which the assertion P holds, execution of the command c will
either infinite loop or safely terminate in a state on which the assertion Q
holds.” This book mainly addresses logics of partial correctness.2

1Hoare wrote his triples P{c}Q with the braces quoting the commands, which makes
sense when quoting program commands within a logical statement. Wirth used the braces as
comment brackets in the Pascal language to encourage assertions as comments, leading to
the style {P}c{Q}, which makes more sense when quoting assertions within a program. The
Wirth style is now commonly used everywhere, regardless of where it makes sense.

2 Some of our semantic techniques work best in a partial-correctness setting. We make
the excuse that total correctness—knowing that a program terminates—is little comfort
without also knowing that it terminates in less than the lifetime of the universe. It is better
to have a resource bound, which is actually a form of partial correctness. Our techniques do
extend to logics of resource-bounds [39].

2. HOARE LOGIC 11

THE INFERENCE RULES OF HOARE LOGIC include,

seq
{P} c1 {P ′} {P ′} c2 {Q}

{P} c1; c2 {Q}
assign

{Q[e/x]} x := e {Q}

consequence
P ⇒ P ′ {P ′} c {Q′} Q′⇒Q

{P} c {Q}

The notation P[e/x] means “the logical formula P with every occurrence of
variable x replaced by expression e.” A natural-deduction rule A B

C
derives

conclusion C from premises A and B.
Using these rules, we can derive the validity of the triple

{a ≥ b} (c := a+ 1; b := b− 1) {c > b}, as follows:

a ≥ b⇒ a+ 1> b− 1
ass
{a+ 1> b− 1} c := a+ 1 {c > b− 1}

con
{a ≥ b} c := a+ 1 {c > b− 1}

...

ass
{c > b− 1} b := b− 1 {c > b}

seq
{a ≥ b} (c := a+ 1; b := b− 1) {c > b}

(Here we use a 1-sided version of the rule of consequence, omitting the
trivial c > b− 1 ⇒ c > b− 1.)

Writing derivation trees in the format above is unwieldy. Hoare-
logic proofs can also be presented by interleaving the assertions with the
commands; where two assertions appear in a row, the rule of consequence
has been used:

assert {a ≥ b}
assert {a+ 1≥ b− 1}
c:=a+1;
assert {c > b− 1}
b:=b-1;
assert {c > b}

MANY OF THE STEPS in deriving a Hoare logic proof can be completely
mechanical, with mathematical insight required at only some of the

2. HOARE LOGIC 12

steps. One useful semiautomatic method is “backward proof”, that takes
advantage of the way the assign rule derives the precondition Q[e/x] from
the postcondition Q.

Read the following proof from bottom to top:

{(a ≥ b)} (by mathematics)
{(a+ 1> b− 1)} (by substitution)
{(c > b− 1)[a+ 1/c]} (by assign)
c:=a+1;
{(c > b− 1)} (by substitution)
{(c > b)[b− 1/b]} (by assign)
b:=b-1;
{c > b} (the given postcondition)

Working backwards, every step labeled “by assign” or “by substitution”
is completely mechanical; only the step “by mathematics” might require
nonmechanical proof—although in this case the proof is easily accomplished
by any of several automated semidecision procedures for arithmetic.

SOMETIMES FORWARD PROOF IS NECESSARY. Especially in separation logic
(which we will see later), one must establish the a memory-layout precon-
dition before even knowing that a command is safe to execute, so backward
proof does not work well. Forward proof can be accomplished with Hoare’s
assignment rule, but working out the right substition can feel clumsy.
Instead we might use Floyd’s assignment rule,

floyd
{P} x := e {∃x ′, x = e[x ′/x]∧ P[x ′/x]}

whose postcondition says, there exists a value x ′ which is the old value of
x before the assignment, such that the new value of x is the evaluation of
expression e but using the old value x ′ instead of x , and the precondition P
holds (but again, substituting x ′ for x).

2. HOARE LOGIC 13

We can try a forward proof of the same program fragment:

{(a ≥ b)} (the given precondition)
c:=a+1;
{∃c′. c = ((a+ 1)[c′/c]) ∧ (a ≥ b)[c′/c]} (by floyd)
{c = ((a+ 1)[c′/c]) ∧ (a ≥ b)[c′/c]} (by ∃-elim)
{c = a+ 1 ∧ (a ≥ b)} (by substitution)
b:=b-1;
{∃b′. b = ((b− 1)[b′/b]) ∧ (c = a+ 1 ∧ a ≥ b)[b′/b]} (by floyd)
{b = b′− 1 ∧ c = a+ 1 ∧ a ≥ b′} (by ∃-elim and substitution)
{c > b} (by mathematics)

All the steps except the last are quite mechanical, and the last step is such
simple mathematics that many algorithms will also solve it mechanically.

TO REASON ABOUT PROGRAMS WITH CONTROL FLOW, we use the if and while
rules.

if
{P ∧ e} c1 {Q} {P ∧¬e} c2 {Q}
{P} if e then c1 else c2 {Q}

while
{I ∧ e} c {I}

{I}while e do c {I ∧¬e}

We can use these to prove correctness of an (inefficient) algorithm for
division by repeated subtraction. To compute q = ⌊a/b⌋, count the number
of times b can be subtracted from a:

q:=0; while (a>b) do (a:=a-b; q:=q+1)

To specify this algorithm, we write a precondition and a postcondition;
what should they be? We want to say that the quotient q equals a divided
by b, rounded down. But when the loop is finished, it will not be the case
that q = ⌊a/b⌋, because a has been modified by the loop body. So we make
up auxiliary variables a0, b0 to represent the original values of a and b.
Auxiliary variables are part of the specification or proof but not actually
used in the program.

So we might write a precondition a = a0 ∧ b = b0 and a postcondition
q = ⌊a0/b0⌋. This looks convincing, but during the proof we will run into
trouble if either a or b is negative. This algorithm requires a strengthened
precondition, a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0.

2. HOARE LOGIC 14

We will use the loop invariant I = (a0 = a+bq∧b = b0∧a0 ≥ 0∧b0 > 0).
Now the (forward) proof proceeds as follows.

{a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0}
q := 0;
{q = 0∧ a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0}
{I}
while (a≥b) do (

{a ≥ b ∧ I}
{a ≥ b ∧ a0 = a+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
a:=a-b;

{a = a′− b ∧ a′ ≥ b ∧ a0 = a′+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
q:=q+1

{q = q′+ 1∧ a = a′− b ∧ a′ ≥ b ∧ a0 = a′+ bq′ ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
{a0 = a+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0} (2)
{I}

)
{I ∧¬(a ≥ b)}
{a0 = a+ b0q ∧ a0 ≥ 0∧ b0 > 0∧ a < b0}
{q = ⌊a0/b0⌋} (3)

The only nonmechanical steps in this proof are (1) finding the right loop
invariant I , and the two rule-of-consequence steps labeled (2) and (3).

It turns out that this algorithm also computes the remainder in variable
a, so we could have easily proved a stronger postcondition, a0 = qb0 + a ∧
0≤ a < b0 characterizing the quotient q and remainder a.

That algorithm runs in time proportional to a/b, which is exponential
in the size of the binary representation of a.

A more efficient algorithm is long division, in which we first shift the
divisor b left enough bits until it is greater than a, and then repeatedly
subtract z from a, shifting right after each subtraction. This is a linear
time algorithm, assuming that each primitive addition or subtraction takes
constant time. It relies on the ability to shift z right by one bit, which we
write as z := z/2.

2. HOARE LOGIC 15

{a ≥ 0∧ b > 0}
n:=0;
z:=b;
while (z≤a)

do (n:=n+1; z:=z+z);
q:=0; r:=a;
while (n>0) do (

n:=n-1;
z:=z/2;
q:=q+q;
if (z≤r)
then (q:=q+1; r:=r-z)
else skip

)
{a = qb+ r ∧ 0≤ r ≤ b}

This algorithm is complex enough that it really is useful to have a proof
of correctness. The precondition and postconditions are shown here. We
avoid the need to mention a0 and b0 because the algorithm never assigns
to a and b, so of course a = a0 ∧ b = b0. One could prove this formally by
adding a = a0 ∧ b = b0 to both the precondition and the postcondition.

There are two loops here, and their invariants are,

I0 = z = b2n ∧ n≥ 0∧ a ≥ 0∧ b > 0

I1 = a = qz+ r ∧ 0≤ r < z ∧ z = b2n ∧ n≥ 0

The reader is invited to work though the steps of the proof, or to consult
the detailed proof by Reynolds [81].

16

Chapter 3

Separation logic

In Hoare logic it is difficult to reason about mutable data structures
such as arrays and pointers. One can model the statement a[i] := v
as an assignment to a of a new array value, update(a, i, v), such that
update(a, i, v)[i] = v and update(a, i, v)[j] = a[j] for j ̸= i. One cannot
simply treat a[i] as a local variable, because assertion P may contain
references such as a[j] that may or may not refer to a[i]. Instead, one can
use a variant of the Hoare assignment rule to model array update:

Hoare-array-assign
{P[update(a, i, v)/a]} a[i] := v {P}

But this is clumsy: it looks like a global update to all of a, instead of a local
update to just one slot. For example, consider this judgment:

{a[i] = 5∧ a[j] = 7} a[i] := 8 {a[i] = 8∧ a[j] = 7}

To prove this we “simply” apply the Hoare array-assignment rule and the
rule of consequence:

let P = a[i] = 5∧ a[j] = 7
Q = update(a, i, 8)[i] = 8∧ update(a, i, 8)[j] = 7
R= a[i] = 8∧ a[j] = 7

P ⇒Q
H-a-a {Q} a[i] := 8 {R}consequence
{P} a[i] := 8 {R}

3. SEPARATION LOGIC 17

Proving P ⇒ Q requires keeping track of the fact that i ̸= j so that
we can calculate (update(a, i, 8))[j] = a[j]. But wait! We are not told
i ̸= j, so this step is invalid. The correct precondition should have been,
i ̸= j ∧ a[i] = 5∧ a[j] = 7.

This illustrates the difficulty: a proliferation of antialiasing facts (i ̸= j)
and tedious rewritings (i ̸= j ⇒ update(a, i, v)[j] = a[j]). Modeling the
pointer update p. f := v, on similar principles, is even more clumsy: it looks
like a global update to the entire heap.

THE IDEA OF SEPARATION LOGIC is to better support the principle of local
action. An assertion (precondition or postcondition) holds on a particular
subheap, or heaplet. In Hoare logic we might say {P ∧ R} c {Q ∧ R} to mean
that P and R both hold on the initial state, Q and R both hold on the final
state. In separation logic we say {P ∗ R} c {Q ∗ R}, meaning that the initial
state comprises two disjoint heaplets satisfying P and R, and the final state
comprises two disjoint heaplets satisfying Q and R.

One can think of an assertion P as describing a certain set of addresses,
and characterizing the values stored there. The “maps-to” assertion p e
describes a single-word heaplet whose domain is just address p, and says
that the value e is stored there. The expression p must be an l-value, an
expression of the programming language that can appear to the left of an
assignment statement. For example, a[i] is an l-value in,

{a[i] 5 ∗ a[j] 7} a[i] := 8 {a[i] 8 ∗ a[j] 7}

The assertion a[i] 5 ∗ a[j] 7 means that a[i] 5 and a[j] 7 hold on
two disjoint parts of the heap, and therefore i ̸= j.

INFERENCE RULES OF SEPARATION LOGIC include the Hoare rules assignment,
sequence, if, consequence exactly as written on page 11. But we must now
understand that each assertion characterizes a particular subheap of the
global heap. Furthermore, expressions e can refer only to local variables;
they cannot refer to the heap at all. That is, the assignment rule can
describe x := y + z but it does not cover x := a[i]; and assertions can
describe x > y + z but cannot say a[i] = v.

3. SEPARATION LOGIC 18

Instead of the assignment rule, we use a load rule to fetch a[i], and the
maps-to assertion a[i] v. The existential ∃x ′ in the load rule serves the
same purpose as in the Floyd assignment rule (page 12).

load-array
{a[e1] e2} x := a[e1] {∃x ′. x = a[e1[x ′/x]]∧ (a[e1] e2)[x ′/x]}

store-array
{a[e] e0} a[e] := e1 {a[e] e1}

frame
{P} c {Q} modv(c)∩ fv(R) = ;

{P ∗ R} c {Q ∗ R}

THE FRAME RULE IS THE VERY ESSENCE of separation logic. The triple {P} c {Q}
depends only on the part of the heap described by P, and modifies only
that part of the heap (into some state described by Q). Any other part of
the heap—such as the part described by R—is unchanged by the command
c. In contrast, in an ordinary Hoare logic with ordinary conjuction ∧, the
triple {P} c {Q} does not imply {P ∧ R} c {Q ∧ R} (where P and R describe
the same heap). It is for this reason that separation-logic proofs are more
modular than Hoare-logic proofs.

The condition modv(c) ∩ fv(R) = ; states that the modified variables
of the command c must be disjoint from the free variables of the assertion
R. The command a[i] := 8 modifies no variables—storing into one slot of
array a does not modify the value of a considered as an address.

The proof of our array store a[i] := 8 is then,

store-array
{a[i] 5} a[i] := 8 {a[i] 8} ; ∩ {a, i}= ;

frame {a[i] 5 ∗ a[j] 7} a[i] := 8 {a[i] 8 ∗ a[j] 7}

IT IS OBLIGATORY IN AN INTRODUCTION TO SEPARATION LOGIC to present a proof
of the in-place list reversal algorithm. Here’s some C code that reverses a
list (treating 0 as the NULL pointer):

/∗ v points to a linked list ∗/
w=0;
while (v != 0) { t = v.next; v.next = w; w = v; v = t; }
/∗ w points to the in-place reversal of the list. ∗/

3. SEPARATION LOGIC 19

It can be understood using these pictures. At the beginning:
w v

Halfway done:
w v

Done:
w v

Now we prove it in separation logic. The first step is to define what we
mean by a list.

listshape(x) = (x = 0∧ emp) ∨
(x ̸= 0∧ ∃h∃t. x .head h ∗ x .next t ∗ listshape t)

That is, listshape(x) is a recursive predicate, that says either x is nil—the
pointer is 0 and the heaplet is empty—or x is the address of a cons cell
with head h, tail t, where t is a list. Furthermore, the head cell is disjoint
from all the other list cells. (The predicate emp describes the heap with an
empty footprint; it is a unit for the ∗ operator.)

What does that mean, a recursive predicate? There are different choices
for the semantics of the recursion operator, as Chapters 10 and 17 will
explain. Here we can just use our intuition.

Program analyses in separation logic often want to reason not about the
whole list from x to nil, but with list segments. The segment from x to y
is either empty (x = y) or has a first element at address x and has a last
element whose tail-pointer is y . Written as a recursive predicate, this is,

listsegshape(x , y) = (x = y ∧ emp) ∨
(x ̸= y ∧ ∃h∃t. x .head h ∗ x .next t

∗ listsegshape(t, y))

For example, the list 1 ap b c 02 3 4 contains the
segments p 0 (the whole list with contents [1,2,3,4]), p c (the segment

3. SEPARATION LOGIC 20

with contents [1,2, 3]), a c (the segment with contents [2,3]), b b (an
empty segment with contents []), and so on. When we use 0 to represent
nil, then listsegshape(x , 0) is the same as listshape(x).

Some proofs of programs focus on shape and safety—proving that data
structures have the right shape (list? tree? dag? cyclic graph?) and that
programs do not dereference nil (or otherwise crash). But sometimes we
want proofs of stronger correctness properties. In the case of list-reverse,
we may want to prove not only that the result is a list, but that the elements
now appear in the reverse order. For such proofs we need to relate the
linked-list data structure to abstract mathematical sequences.

Instead of an operator listsegshape(x) saying that x points to a list
segment, we want to say listrep(σ)(x , y) meaning that x points to a list
segment ending at y , and the contents (head elements) of that segment are
the sequence σ. That is, the chain of list cells x y is the representation in
memory of σ.

listrepσ (x , y) = (x = y ∧σ = ε∧ emp)
∨(x ̸= y ∧ ∃σ′ ∃h∃t.σ = h ·σ′

∧ x .head h ∗ x .next t ∗ listrepσ′ (t, y))

We will notate listrepσ (x , y) as x
σ
 y .

Now we are ready to prove the list-reversal program. The precondition
is that v is a linked list representing σ, and the postcondition is that w
represents rev(σ):

assert{v
σ
 0}

w=0; while (v != 0) {t = v.next; v.next = w; w = v; v = t; }
assert{w

revσ
 0}

As usual in Hoare logic, we need a loop invariant:

∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v
σ2 0 ∗w

σ1 0

This separation-logic formula describes
the picture in which the original
sequence σ can be viewed as the

w v

concatenation of some σ1 (reversed) and some σ2—we use · to denote se-

3. SEPARATION LOGIC 21

quence concatenation—and where the list segment from v to nil represents
σ2, and the list segment from w to nil represents σ1.

To prove this program we need the inference rules of separation logic;
the ones shown earlier, plus rules for loading/storing of record fields and
for manipulating existential quantifiers. The rule for while is just like the
Hoare-logic while rule; as usual, all expressions e (including the while-loop
condition) must be pure, that is, must not load from the heap directly.

load-field
{e1.fld e2} x := (e1.fld) {∃x ′. x = e2[x ′/x]∧ (e1.fld e2)[x ′/x]}

store-field
{e.fld e0} (e.fld) := e1 {e.fld e1}

while
{e ∧ P} c {P}

{P}while e do c {¬e ∧ P}

generalize-exists
P ⊢ ∃x .P

extract-exists
{P} c {Q}

{∃x .P} c {∃x .Q}

Our rules for the existential are written in a semiformal (“traditional”)
mathematical style, assuming that x may be one of the free variables of a
formula P. In later chapters we will treat this more formally.

Figure 3.1 presents the program annotated with assertions, where each
assertion leads to the next. The proof is longer than the program! Checking
such a proof by hand might miss some errors. Automating the application
of separation logic in a proof assistant ensures that there are no gaps in the
proof. Better yet, perhaps parts of the construction, not just the checking,
can be automated.

Let us examine some of the key points in the proof. Just before the
while loop (line 3), we have {w = 0 ∧ v

σ
 0}, that is, the initialization

of w and the program precondition that the sequence σ is represented by
the list starting at pointer v. We must establish the loop invariant (line 5),
{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2 0 ∗w
σ1 0}. To do this we let σ1 be the

empty sequence and σ2 = σ.

3. SEPARATION LOGIC 22
1 assert{v

σ
 0}

2 w=0;
3 assert{w= 0∧ v

σ
 0}

4 assert{let σ1 = ε, σ2 = σ in σ = rev(σ1) ·σ2 ∧ v
σ2 0 ∗w

σ1 0}
5 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2 0 ∗w
σ1 0}

6 while (v != 0) with loop invariant{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v
σ2 0 ∗w

σ1 0}
7 { assert{v ̸= 0∧ ∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2 0 ∗w
σ1 0}

8 assert{v ̸= 0∧σ = rev(σ1) ·σ2 ∧ v
σ2 0 ∗w

σ1 0}
9 assert{∃ρ, h, p. σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next p ∗ p

ρ
 0 ∗w

σ1 0}
10 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next p ∗ p

ρ
 0 ∗w

σ1 0}
11 t = v.next;
12 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next t ∗ t

ρ
 0 ∗w

σ1 0}
13 v.next = w;
14 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next w ∗ t

ρ
 0 ∗w

σ1 0}
15 assert{∃q. σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next q ∗ t

ρ
 0 ∗ q

σ1 0}

16 assert{σ = rev(h ·σ1) ·ρ ∧ t
ρ
 0 ∗ v

h·σ1 0}
17 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ t

σ2 0 ∗ v
σ1 0}

18 assert{σ = rev(σ1) ·σ2 ∧ t
σ2 0 ∗ v

σ1 0}
19 w = v;
20 assert{σ = rev(σ1) ·σ2 ∧ t

σ2 0 ∗w
σ1 0}

21 v = t;
22 assert{σ = rev(σ1) ·σ2 ∧ v

σ2 0 ∗w
σ1 0}

23 }
24 assert{v= 0∧ ∃σ1,σ2.σ = rev(σ1) ·σ2 ∧ v

σ2 0 ∗w
σ1 0}

25 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧σ2 = ε∧ emp ∗w
σ1 0}

26 assert{w
revσ
 0}

Figure 3.1: List reverse. 4: rev(ε)·σ = ε·σ = σ 5: by generalize-exists 7: by while

8: by extract-exists 9: by unfolding v
σ2 0, then removing the disjunct inconsistent

with v ̸= 0. 10: by extract-exists 12: by load-field, then eliminating variable p 14: by
store-field 15: by generalize-exists 16: rev(σ1) · (h ·ρ) = rev(h ·σ1) ·ρ, then fold the

definition of v
σ2 0 17: by generalize-exists 18: by extract-exists 20: by assign 22:

by assign 24: by while 25: by folding the definition of v
σ2 0, given v = 0 26: by

extract-exists, emp∗P = P, rev(ε) ·σ2 = σ2, then discarding inconsistent conjuncts.

3. SEPARATION LOGIC 23

First thing inside the loop body (line 7), we have the loop invariant and
the additional fact v ̸= 0, and we must rearrange the assertion to isolate a
conjunct of the form v.next p (at line 10), so that we can load from v.next.
(Both rearrange and isolate are technical terms in the symbolic execution
of programs in separation logic—see Chapter 46.) The loop invariant says
that σ1 and σ2 exist, so we instantiate them using the extract-exists rule.

Then (line 9) we can unfold the definition of list-segment v
σ2 0; but

the nil case is inconsistent with v ̸= 0 so we can eliminate it. The non-nil
case of v

σ2 0 is

(v ̸= 0∧∃σ′ ∃h∃t.σ = h ·σ′ ∧ v.head h∗ v.next t ∗ listrepσ (t, 0))

so we use that, extracting σ′, h, t by extract-exists. Now we can rearrange
this assertion into v.next p ∗ other stuff , which serves as the precondition
for the load rule.

At line 14 after the store command, we have rev(σ1) · (h · ρ). By
the algebra of sequence-reversal and concatenation, this is equivalent to
rev(h ·σ1) ·ρ. We will let the new σ1 be h ·σ1, and the new σ2 be ρ. We

can fold the definition of v
h·σ1 0 to make (in effect) the same change at the

representation level.
The extract-exists rule justifies the transition from line 17 to line 18,

that is, from assert(∃σ1.P) to assert(P). It’s not that ∃σ1.P entails P in
isolation, it’s that the Hoare triple {∃σ1.P} c {Q} is provable from {P} c {Q}.
In this case, the Hoare triple {∃σ1.∃σ2.P}w = v;v = t {Q} (lines 17–22) is
provable from {P}w = v;v = t {Q} (lines 18–22).

At line 24 after the loop, we have the loop invariant and the fact that
the loop condition is false, therefore v = 0. We can extract the existentially
quantified σ1 and σ2, then notice that v = 0 implies σ2 is empty. Thus
σ = rev(σ1), and we’re done.

For a longer tutorial on separation logic, the reader might try Reynolds
[80] or O’Hearn [72].

ARE THE AXIOMS OF SEPARATION LOGIC, as presented in this chapter, really
sound—especially when applied to a real programming language, not an
idealized one? Building their soundness proof within a proof assistant will

3. SEPARATION LOGIC 24

ensure that when we prove properties of programs using separation logic,
those properties really hold of their execution. Can this separation logic
be used to reason about function-pointers or concurrent threads? All such
questions are the subject of the rest of this book.

